These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 7795317)
1. On the simultaneous distribution of size and costs of an epidemic in a closed multigroup population. Svensson A Math Biosci; 1995 Jun; 127(2):167-80. PubMed ID: 7795317 [TBL] [Abstract][Full Text] [Related]
2. Large-sample analysis for a stochastic epidemic model and its parameter estimators. Fierro R J Math Biol; 1996; 34(8):843-56. PubMed ID: 8858853 [TBL] [Abstract][Full Text] [Related]
3. The shape of the size distribution of an epidemic in a finite population. Ball F; Nåsell I Math Biosci; 1994 Oct; 123(2):167-81. PubMed ID: 7827418 [TBL] [Abstract][Full Text] [Related]
4. The stochastic general epidemic model revisited and a generalization. Billard L; Zhao Z IMA J Math Appl Med Biol; 1993; 10(1):67-75. PubMed ID: 8409626 [TBL] [Abstract][Full Text] [Related]
5. Dynamic population epidemic models. Ball FG Math Biosci; 1991 Dec; 107(2):299-324. PubMed ID: 1806120 [TBL] [Abstract][Full Text] [Related]
6. Epidemics in a population with social structures. Andersson H Math Biosci; 1997 Mar; 140(2):79-84. PubMed ID: 9046769 [TBL] [Abstract][Full Text] [Related]
7. A threshold limit theorem for a multitype epidemic model. Andersson H Math Biosci; 1993; 117(1-2):3-18. PubMed ID: 8400582 [TBL] [Abstract][Full Text] [Related]
8. Models for the simple epidemic. West RW; Thompson JR Math Biosci; 1997 Apr; 141(1):29-39. PubMed ID: 9077078 [TBL] [Abstract][Full Text] [Related]
9. Optimal intervention for epidemic models with general infection and removal rate functions. Clancy D J Math Biol; 1999 Oct; 39(4):309-31. PubMed ID: 10550576 [TBL] [Abstract][Full Text] [Related]
10. Collective epidemic models. Lefèvre C; Picard P Math Biosci; 1996 May; 134(1):51-70. PubMed ID: 8935955 [TBL] [Abstract][Full Text] [Related]
11. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models. Grasman J Math Biosci; 1998 Aug; 152(1):13-27. PubMed ID: 9727295 [TBL] [Abstract][Full Text] [Related]
12. Cost-minimal immunization in the Greenwood epidemic model. Hinderer K; Müller A Math Biosci; 1997 May; 142(1):31-58. PubMed ID: 9125859 [TBL] [Abstract][Full Text] [Related]
13. Assessing the variability of stochastic epidemics. Isham V Math Biosci; 1991 Dec; 107(2):209-24. PubMed ID: 1806114 [TBL] [Abstract][Full Text] [Related]
14. Network epidemic models with two levels of mixing. Ball F; Neal P Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521 [TBL] [Abstract][Full Text] [Related]
15. The asymptotic final size distribution of reducible multitype Reed-Frost processes. Scalia-Tomba G J Math Biol; 1986; 23(3):381-92. PubMed ID: 3711737 [TBL] [Abstract][Full Text] [Related]
16. Probability of a disease outbreak in stochastic multipatch epidemic models. Lahodny GE; Allen LJ Bull Math Biol; 2013 Jul; 75(7):1157-80. PubMed ID: 23666483 [TBL] [Abstract][Full Text] [Related]
17. Estimating the initial relative infection rate for a stochastic epidemic model. Yip P Theor Popul Biol; 1989 Oct; 36(2):202-13. PubMed ID: 2814904 [TBL] [Abstract][Full Text] [Related]
18. The effect of preferential mixing on the growth of an epidemic. Marschner IC Math Biosci; 1992 Apr; 109(1):39-67. PubMed ID: 1591449 [TBL] [Abstract][Full Text] [Related]
19. A stochastic mover/stayer model for an HIV epidemic. Rossi C Math Biosci; 1991 Dec; 107(2):521-45. PubMed ID: 1806130 [TBL] [Abstract][Full Text] [Related]
20. Outbreak Size Distribution in Stochastic Epidemic Models. Hindes J; Assaf M; Schwartz IB Phys Rev Lett; 2022 Feb; 128(7):078301. PubMed ID: 35244445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]