These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7795491)

  • 1. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adaptation of the frog tongue to various taste solutions: the effect on gustatory neural responses to bitter stimuli.
    Sugimoto K; Sato T
    Comp Biochem Physiol A Comp Physiol; 1982; 73(3):361-72. PubMed ID: 6128122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of gustatory neural response to salts following adaptation of frog tongue to quinine-HCI.
    Sato T
    Tohoku J Exp Med; 1975 Dec; 117(4):381-4. PubMed ID: 1082184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential.
    Sato T; Nishishita K; Mineda T; Okada Y; Toda K
    Chem Senses; 2007 Jan; 32(1):3-10. PubMed ID: 16956970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical properties and gustatory responses of various taste disk cells of frog fungiform papillae.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2008 Apr; 33(4):371-8. PubMed ID: 18245793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterial perfusion of frog tongue for intracellular recording of taste cell receptor potential.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):247-50. PubMed ID: 2864165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanism of generation of receptor potential in response to quinine in frog taste cell.
    Okada Y; Miyamoto T; Sato T
    Brain Res; 1988 May; 450(1-2):295-302. PubMed ID: 3261192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell.
    Sato T; Nishishita K; Okada Y; Toda K
    Cell Mol Neurobiol; 2009 Mar; 29(2):243-52. PubMed ID: 18972206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topographical difference in taste organ density and its sensitivity of frog tongue.
    Sato T; Ohkusa M; Okada Y; Sasaki M
    Comp Biochem Physiol A Comp Physiol; 1983; 76(2):233-9. PubMed ID: 6139204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depression of frog gustatory neural responses to quinine-HCl after adaptation of the tongue to various taste stimuli.
    Sugmioto K; Sato T
    Experientia; 1978 Feb; 34(2):196-7. PubMed ID: 304813
    [No Abstract]   [Full Text] [Related]  

  • 11. Neural representation of bitter taste in the nucleus of the solitary tract.
    Lemon CH; Smith DV
    J Neurophysiol; 2005 Dec; 94(6):3719-29. PubMed ID: 16107527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latency of gustatory neural impulses initiated in frog tongue.
    Sato T; Miyamoto T; Okada Y
    Brain Res; 1987 Oct; 424(2):333-42. PubMed ID: 3499962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor potential of the frog taste cell in response to bitter stimuli.
    Sato T; Okada Y; Miyamoto T
    Physiol Behav; 1994 Dec; 56(6):1133-9. PubMed ID: 7878082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response characteristics of rat taste cells to four basic taste stimuli.
    Sato T; Beidler LM
    Comp Biochem Physiol A Comp Physiol; 1982; 73(1):1-10. PubMed ID: 6127183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances.
    Mashiyama K; Nozawa Y; Ohtubo Y; Kumazawa T; Yoshii K
    Brain Res; 2014 Mar; 1556():1-9. PubMed ID: 24513402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-depolarization and off-hyperpolarization after termination of quinine-HCl stimulation in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1996 Feb; 13(1):63-7. PubMed ID: 8688812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis.
    Hanamori T; Hirota K; Ishiko N
    J Gen Physiol; 1990 Jun; 95(6):1159-82. PubMed ID: 2374001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dye-coupling among frog (Rana catesbeiana) taste disk cells.
    Sata O; Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1992 Sep; 103(1):99-103. PubMed ID: 1356703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic basis of salt-induced receptor potential in frog taste cells.
    Miyamoto T; Okada Y; Sato T
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):591-5. PubMed ID: 2575944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Epithelial response of the frog tongue surface to salt and its relation to taste nerve activity].
    Sakudo F
    Fukuoka Shika Daigaku Gakkai Zasshi; 1990; 17(4):400-15. PubMed ID: 2135054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.