These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 7795519)
1. Approaches to labeling and identification of active site residues in glycosidases. Withers SG; Aebersold R Protein Sci; 1995 Mar; 4(3):361-72. PubMed ID: 7795519 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737 [TBL] [Abstract][Full Text] [Related]
3. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418 [TBL] [Abstract][Full Text] [Related]
4. Molecular basis of substrate specificity in family 1 glycoside hydrolases. Marana SR IUBMB Life; 2006 Feb; 58(2):63-73. PubMed ID: 16611572 [TBL] [Abstract][Full Text] [Related]
5. Identification of the active site nucleophile in the thermostable beta-glycosidase from the archaeon Sulfolobus solfataricus expressed in Escherichia coli. Febbraio F; Barone R; D'Auria S; Rossi M; Nucci R; Piccialli G; De Napoli L; Orrù S; Pucci P Biochemistry; 1997 Mar; 36(11):3068-75. PubMed ID: 9115982 [TBL] [Abstract][Full Text] [Related]
6. Mechanism-based inhibitors to probe transitional states of glycoside hydrolases. Hinou H; Kurogochi M; Nishimura S Methods Enzymol; 2006; 415():202-12. PubMed ID: 17116476 [TBL] [Abstract][Full Text] [Related]
7. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Mian IS Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294 [TBL] [Abstract][Full Text] [Related]
8. Analysis of glycoside hydrolase family 98: catalytic machinery, mechanism and a novel putative carbohydrate binding module. Rigden DJ FEBS Lett; 2005 Oct; 579(25):5466-72. PubMed ID: 16212961 [TBL] [Abstract][Full Text] [Related]
9. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Bolam DN; Hughes N; Virden R; Lakey JH; Hazlewood GP; Henrissat B; Braithwaite KL; Gilbert HJ Biochemistry; 1996 Dec; 35(50):16195-204. PubMed ID: 8973192 [TBL] [Abstract][Full Text] [Related]
10. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity. Lawson SL; Wakarchuk WW; Withers SG Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474 [TBL] [Abstract][Full Text] [Related]
11. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I. Faridmoayer A; Scaman CH Glycobiology; 2005 Dec; 15(12):1341-8. PubMed ID: 16014748 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. Cui Z; Maruyama Y; Mikami B; Hashimoto W; Murata K J Mol Biol; 2007 Nov; 374(2):384-98. PubMed ID: 17936784 [TBL] [Abstract][Full Text] [Related]
13. Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Paal K; Ito M; Withers SG Biochem J; 2004 Feb; 378(Pt 1):141-9. PubMed ID: 14561218 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. Sanz-Aparicio J; Hermoso JA; MartÃnez-Ripoll M; Lequerica JL; Polaina J J Mol Biol; 1998 Jan; 275(3):491-502. PubMed ID: 9466926 [TBL] [Abstract][Full Text] [Related]
15. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target. Harris JM; McIntosh EM; Muscat GE J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142 [TBL] [Abstract][Full Text] [Related]
16. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis. Lassila JK; Keeffe JR; Kast P; Mayo SL Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527 [TBL] [Abstract][Full Text] [Related]
17. [The active site of human glucocerebrosidase: structural predictions and experimental validations]. Fabrega S; Durand P; Mornon JP; Lehn P J Soc Biol; 2002; 196(2):151-60. PubMed ID: 12360744 [TBL] [Abstract][Full Text] [Related]
18. Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily. Lacombe-Harvey ME; Fukamizo T; Gagnon J; Ghinet MG; Dennhart N; Letzel T; Brzezinski R FEBS J; 2009 Feb; 276(3):857-69. PubMed ID: 19143844 [TBL] [Abstract][Full Text] [Related]
19. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004 [TBL] [Abstract][Full Text] [Related]
20. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]