These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7795531)

  • 1. Stabilization of a strained protein loop conformation through protein engineering.
    Hodel A; Kautz RA; Fox RO
    Protein Sci; 1995 Mar; 4(3):484-95. PubMed ID: 7795531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress and strain in staphylococcal nuclease.
    Hodel A; Kautz RA; Jacobs MD; Fox RO
    Protein Sci; 1993 May; 2(5):838-50. PubMed ID: 8495201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of anchorage in determining a strained protein loop conformation.
    Hodel A; Kautz RA; Adelman DM; Fox RO
    Protein Sci; 1994 Apr; 3(4):549-56. PubMed ID: 8003973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering alternative beta-turn types in staphylococcal nuclease.
    Hynes TR; Hodel A; Fox RO
    Biochemistry; 1994 May; 33(17):5021-30. PubMed ID: 8172877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two conformational states of Turkey ovomucoid third domain at low pH: three-dimensional structures, internal dynamics, and interconversion kinetics and thermodynamics.
    Song J; Laskowski M; Qasim MA; Markley JL
    Biochemistry; 2003 Jun; 42(21):6380-91. PubMed ID: 12767219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.
    Hodel A; Rice LM; Simonson T; Fox RO; Brünger AT
    Protein Sci; 1995 Apr; 4(4):636-54. PubMed ID: 7613463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease.
    Raleigh DP; Evans PA; Pitkeathly M; Dobson CM
    J Mol Biol; 1992 Nov; 228(2):338-42. PubMed ID: 1453444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.
    Patel S; Sasidhar YU
    J Pept Sci; 2007 Oct; 13(10):679-92. PubMed ID: 17787022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A; García-Moreno B; Lattman EE; García AE
    Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodation of insertion mutations on the surface and in the interior of staphylococcal nuclease.
    Keefe LJ; Quirk S; Gittis A; Sondek J; Lattman EE
    Protein Sci; 1994 Mar; 3(3):391-401. PubMed ID: 8019410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and energetic differences between insertions and substitutions in staphylococcal nuclease.
    Sondek J; Shortle D
    Proteins; 1992 Apr; 13(2):132-40. PubMed ID: 1620695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy.
    Royer CA; Hinck AP; Loh SN; Prehoda KE; Peng X; Jonas J; Markley JL
    Biochemistry; 1993 May; 32(19):5222-32. PubMed ID: 8494899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins.
    Guan RJ; Xiang Y; He XL; Wang CG; Wang M; Zhang Y; Sundberg EJ; Wang DC
    J Mol Biol; 2004 Aug; 341(5):1189-204. PubMed ID: 15321715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted backbone conformational and motional flexibilities of loops containing peptidyl-proline bonds dominate the enzyme activity of staphylococcal nuclease.
    Shan L; Tong Y; Xie T; Wang M; Wang J
    Biochemistry; 2007 Oct; 46(41):11504-13. PubMed ID: 17887731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.