These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7795860)

  • 1. Non-invasive identification of gastric contractions from surface electrogastrogram using back-propagation neural networks.
    Chen JD; Lin Z; Wu Q; McCallum RW
    Med Eng Phys; 1995 Apr; 17(3):219-25. PubMed ID: 7795860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of gastric contractions from the cutaneous electrogastrogram.
    Chen JD; Richards RD; McCallum RW
    Am J Gastroenterol; 1994 Jan; 89(1):79-85. PubMed ID: 8273804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network.
    Wang ZS; Cheung JY; Chen JD
    Med Biol Eng Comput; 1999 Jan; 37(1):80-6. PubMed ID: 10396846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filter banks and neural network-based feature extraction and automatic classification of electrogastrogram.
    Wang Z; He Z; Chen JD
    Ann Biomed Eng; 1999; 27(1):88-95. PubMed ID: 9916764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks.
    Chen JD; Lin Z; McCallum RW
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):409-12. PubMed ID: 10743784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency representation of the electrogastrogram--application of the exponential distribution.
    Lin ZY; Chen JD
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):267-75. PubMed ID: 8045579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The noise influence on determination dominant frequencies of EGG signal.
    Komorowski D; Pietraszek S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():392-5. PubMed ID: 19963964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of combined genetic algorithms with cascade correlation to diagnosis of delayed gastric emptying from electrogastrograms.
    Liang H; Lin Z; McCallum RW
    Med Eng Phys; 2000 Apr; 22(3):229-34. PubMed ID: 10964043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The simultaneous recording and analysis both EGG and HRV signals.
    Pietraszek S; Komorowski D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():396-9. PubMed ID: 19963965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the electric activity in the human stomach to water and a solid meal.
    Chen J; McCallum RW
    Med Biol Eng Comput; 1991 Jul; 29(4):351-7. PubMed ID: 1787749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computerized data analysis method for electrogastrographic signals.
    Brezulianu A; Fira M; Gazzi E; Sorodoc L
    Rev Med Chir Soc Med Nat Iasi; 2009; 113(1):120-4. PubMed ID: 21491812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks.
    Liang J; Cheung JY; Chen JD
    Ann Biomed Eng; 1997; 25(5):850-7. PubMed ID: 9300109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of electromechanical activity of the stomach in humans and in dogs with particular attention to tachygastria.
    You CH; Chey WY
    Gastroenterology; 1984 Jun; 86(6):1460-8. PubMed ID: 6143703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive independent component analysis of multichannel electrogastrograms.
    Liang H
    Med Eng Phys; 2001 Mar; 23(2):91-7. PubMed ID: 11413061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized overcomplete signal representation and its applications to time-frequency analysis of electrogastrogram.
    Wang Z; He Z; Chen JD
    Ann Biomed Eng; 1998; 26(5):859-69. PubMed ID: 9779959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling.
    Newton Price C; Mintchev MP
    J Med Eng Technol; 2002; 26(6):239-46. PubMed ID: 12490029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral corticotropin-releasing factor (CRF) induces stimulation of gastric contractions in freely moving conscious rats: role of CRF receptor types 1 and 2.
    Nozu T; Tsuchiya Y; Kumei S; Takakusaki K; Okumura T
    Neurogastroenterol Motil; 2013 Feb; 25(2):190-7. PubMed ID: 23205497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral analysis of episodic rhythmic variations in the cutaneous electrogastrogram.
    Chen JD; Stewart WR; McCallum RW
    IEEE Trans Biomed Eng; 1993 Feb; 40(2):128-35. PubMed ID: 8319963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.