These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 7796145)
1. Immunocytochemical evidence for vesicular storage of glutamate in cat spinocervical and cervicothalamic tract terminals. Kechagias S; Broman J Brain Res; 1995 Mar; 675(1-2):316-20. PubMed ID: 7796145 [TBL] [Abstract][Full Text] [Related]
2. Evidence for vesicular storage of glutamate in primary afferent terminals. Broman J; Adahl F Neuroreport; 1994 Sep; 5(14):1801-4. PubMed ID: 7827336 [TBL] [Abstract][Full Text] [Related]
3. Compartmentation of glutamate and glutamine in the lateral cervical nucleus: further evidence for glutamate as a spinocervical tract neurotransmitter. Kechagias S; Broman J J Comp Neurol; 1994 Feb; 340(4):531-40. PubMed ID: 7516350 [TBL] [Abstract][Full Text] [Related]
4. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. Broman J; Ottersen OP J Neurosci; 1992 Jan; 12(1):204-21. PubMed ID: 1370321 [TBL] [Abstract][Full Text] [Related]
5. Morphological features of cat cervicothalamic tract terminations in different target regions. Zhang M; Broman J Brain Res; 2001 Feb; 890(2):280-6. PubMed ID: 11164794 [TBL] [Abstract][Full Text] [Related]
6. Immunohistochemical evidence for coexistence of glycine and GABA in nerve terminals on cat spinal motoneurones: an ultrastructural study. Ornung G; Shupliakov O; Ottersen OP; Storm-Mathisen J; Cullheim S Neuroreport; 1994 Apr; 5(8):889-92. PubMed ID: 8061289 [TBL] [Abstract][Full Text] [Related]
7. Quantitative analysis of immunogold labeling indicates low levels and non-vesicular localization of L-aspartate in rat primary afferent terminals. Larsson M; Persson S; Ottersen OP; Broman J J Comp Neurol; 2001 Feb; 430(2):147-59. PubMed ID: 11135252 [TBL] [Abstract][Full Text] [Related]
8. Glutamate, but not aspartate, is enriched in trigeminothalamic tract terminals and associated with their synaptic vesicles in the rat nucleus submedius. Persson S; Broman J Exp Brain Res; 2004 Jul; 157(2):152-61. PubMed ID: 14968283 [TBL] [Abstract][Full Text] [Related]
9. Direct observations of synapses between L-glutamate-immunoreactive boutons and identified spinocervical tract neurones in the spinal cord of the cat. Maxwell DJ; Christie WM; Brown AG; Ottersen OP; Storm-Mathisen J J Comp Neurol; 1992 Dec; 326(4):485-500. PubMed ID: 1362431 [TBL] [Abstract][Full Text] [Related]
10. The spatial pattern of the synaptic vesicular apparatus as a correlate of transmitter storage models. Rusakov DA; Skibo GG; Vasilenko DA Neurosci Lett; 1991 Oct; 131(2):156-8. PubMed ID: 1684838 [TBL] [Abstract][Full Text] [Related]
11. Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. Persson S; Boulland JL; Aspling M; Larsson M; Fremeau RT; Edwards RH; Storm-Mathisen J; Chaudhry FA; Broman J J Comp Neurol; 2006 Aug; 497(5):683-701. PubMed ID: 16786558 [TBL] [Abstract][Full Text] [Related]
12. Fine structure of normal and degenerating primary afferent boutons associated with characterized spinocervical tract neurons in the cat. Maxwell DJ; Fyffe RE; Brown AG Neuroscience; 1984 May; 12(1):151-63. PubMed ID: 6462444 [TBL] [Abstract][Full Text] [Related]
13. Terminals of group Ia primary afferent fibres in Clarke's column are enriched with L-glutamate-like immunoreactivity. Maxwell DJ; Christie WM; Ottersen OP; Storm-Mathisen J Brain Res; 1990 Mar; 510(2):346-50. PubMed ID: 1970508 [TBL] [Abstract][Full Text] [Related]
14. Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. Gundersen V; Chaudhry FA; Bjaalie JG; Fonnum F; Ottersen OP; Storm-Mathisen J J Neurosci; 1998 Aug; 18(16):6059-70. PubMed ID: 9698301 [TBL] [Abstract][Full Text] [Related]
15. Evidence for glutamate as neurotransmitter in trigemino-and spinothalamic tract terminals in the nucleus submedius of cats. Ericson AC; Blomqvist A; Craig AD; Ottersen OP; Broman J Eur J Neurosci; 1995 Feb; 7(2):305-17. PubMed ID: 7757265 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural characteristics of glutamatergic and GABAergic terminals in cat lamina IX before and after spinal cord injury. Tai Q; Palazzolo K; Mautes A; Nacimiento W; Kuhtz-Buschbeck JP; Nacimiento AC; Goshgarian HG J Spinal Cord Med; 1997 Jul; 20(3):311-8. PubMed ID: 9261776 [TBL] [Abstract][Full Text] [Related]
17. Fine structure of the rubrospinal terminals in the cervical cord of the cat. Hanaway J; Smith J J Neurol Sci; 1978 Nov; 39(1):31-5. PubMed ID: 731271 [TBL] [Abstract][Full Text] [Related]
18. Ultrastructural and immunocytochemical characterization of terminals of postsynaptic ascending dorsal column fibers in the rat cuneate nucleus. De Biasi S; Vitellaro-Zuccarello L; Bernardi P; Valtschanoff JG; Weinberg RJ J Comp Neurol; 1995 Feb; 353(1):109-18. PubMed ID: 7714242 [TBL] [Abstract][Full Text] [Related]
19. Postembedding immunocytochemistry demonstrates directly that both retinal and cortical terminals in the cat superior colliculus are glutamate immunoreactive. Mize RR; Butler GD J Comp Neurol; 1996 Aug; 371(4):633-48. PubMed ID: 8841915 [TBL] [Abstract][Full Text] [Related]
20. An electron microscopic analysis of rubrospinal tract termination in the spinal cord of the cat. Kostyuk PG; Skibo GG Brain Res; 1975 Mar; 85(3):511-6. PubMed ID: 1111850 [No Abstract] [Full Text] [Related] [Next] [New Search]