These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7796276)

  • 1. Finding flexible patterns in a text: an application to three-dimensional molecular matching.
    Sagot MF; Viari A; Pothier J; Soldano H
    Comput Appl Biosci; 1995 Feb; 11(1):59-70. PubMed ID: 7796276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis.
    Barker JA; Thornton JM
    Bioinformatics; 2003 Sep; 19(13):1644-9. PubMed ID: 12967960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting periodic patterns in biological sequences.
    Coward E; Drabløs F
    Bioinformatics; 1998; 14(6):498-507. PubMed ID: 9694988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of spatial motifs in protein structures.
    Kleywegt GJ
    J Mol Biol; 1999 Jan; 285(4):1887-97. PubMed ID: 9917419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved algorithms for matching r-separated sets with applications to protein structure alignment.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):226-9. PubMed ID: 23702560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithms for protein structural motif recognition.
    Berger B
    J Comput Biol; 1995; 2(1):125-38. PubMed ID: 7497115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structures and contexts associated with recurrent amino acid sequence patterns.
    Han KF; Bystroff C; Baker D
    Protein Sci; 1997 Jul; 6(7):1587-90. PubMed ID: 9232660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible protein alignment and hinge detection.
    Shatsky M; Nussinov R; Wolfson HJ
    Proteins; 2002 Aug; 48(2):242-56. PubMed ID: 12112693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAHAL-Flex: A Numerical and Alphabetical Hinge Detection Algorithm for Flexible Protein Structure Alignment.
    Fotoohifiroozabadi S; Mohamad MS; Deris S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):934-943. PubMed ID: 28534783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D sequence-independent representation of the protein data bank.
    Fischer D; Tsai CJ; Nussinov R; Wolfson H
    Protein Eng; 1995 Oct; 8(10):981-97. PubMed ID: 8771179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins.
    Yang ZR; Thomson R; McNeil P; Esnouf RM
    Bioinformatics; 2005 Aug; 21(16):3369-76. PubMed ID: 15947016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed protein sequence alignment based on Spectral Similarity Score (SSS).
    Gupta K; Thomas D; Vidya SV; Venkatesh KV; Ramakumar S
    BMC Bioinformatics; 2005 Apr; 6():105. PubMed ID: 15850477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):665-78. PubMed ID: 10966776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid protein structure classification using one-dimensional structure profiles on the bioSCAN parallel computer.
    Hoffman DL; Laiter S; Singh RK; Vaisman II; Tropsha A
    Comput Appl Biosci; 1995 Dec; 11(6):675-9. PubMed ID: 8808584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure comparison and structure patterns.
    Eidhammer I; Jonassen I; Taylor WR
    J Comput Biol; 2000; 7(5):685-716. PubMed ID: 11153094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying structural motifs in proteins.
    Singh R; Saha M
    Pac Symp Biocomput; 2003; ():228-39. PubMed ID: 12603031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding common sequence and structure motifs in a set of RNA sequences.
    Gorodkin J; Heyer LJ; Stormo GD
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():120-3. PubMed ID: 9322025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.
    Ye K; Kosters WA; Ijzerman AP
    Bioinformatics; 2007 Mar; 23(6):687-93. PubMed ID: 17237070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.