BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 7796386)

  • 1. On the relationship between rate of uptake of Photofrin and cellular responses to photodynamic treatment in vitro.
    Gantchev TG; Urumov IJ; Van Lier JE
    Cancer Biochem Biophys; 1994 Apr; 14(1):23-34. PubMed ID: 7796386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular accumulation and biological activity of hematoporphyrin derivative(L) in comparison with photofrin II.
    Khanum F; Jain V
    Indian J Exp Biol; 1997 Apr; 35(4):348-55. PubMed ID: 9315233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular binding of hematoporphyrin derivative (HpD) in human bladder cancer cell line: KK-47.
    Hisazumi H; Miyoshi N; Ueki O; Nakajima K
    Prog Clin Biol Res; 1984; 170():443-57. PubMed ID: 6241690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of reciprocity in drug and light dose dependence of photodynamic therapy of pancreatic adenocarcinoma in vitro.
    Moesta KT; Greco WR; Nurse-Finlay SO; Parsons JC; Mang TS
    Cancer Res; 1995 Jul; 55(14):3078-84. PubMed ID: 7606730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy.
    Wilson BC; Olivo M; Singh G
    Photochem Photobiol; 1997 Jan; 65(1):166-76. PubMed ID: 9066298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets.
    Hsieh YJ; Wu CC; Chang CJ; Yu JS
    J Cell Physiol; 2003 Mar; 194(3):363-75. PubMed ID: 12548556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitization, uptake, and retention of phenoxazine Nile blue derivatives in human bladder carcinoma cells.
    Lin CW; Shulok JR; Wong YK; Schanbacher CF; Cincotta L; Foley JW
    Cancer Res; 1991 Feb; 51(4):1109-16. PubMed ID: 1847656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of L-lysine-alpha-oxidase on the cell cycle kinetics of cultured Burkitt's lymphoma cells].
    Zhukova OS; Khaduev SKh; Dobrynin IaV; Smirnova MP; Lukasheva EV
    Eksp Onkol; 1985; 7(6):42-4. PubMed ID: 4085397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro photodynamic therapy of human lung cancer: investigation of dose-rate effects.
    Matthews W; Cook J; Mitchell JB; Perry RR; Evans S; Pass HI
    Cancer Res; 1989 Apr; 49(7):1718-21. PubMed ID: 2522346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypericum perforatum L. extract - novel photosensitizer against human bladder cancer cells.
    Stavropoulos NE; Kim A; Nseyo UU; Tsimaris I; Chung TD; Miller TA; Redlak M; Nseyo UO; Skalkos D
    J Photochem Photobiol B; 2006 Jul; 84(1):64-9. PubMed ID: 16540336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy.
    Schneider R; Schmitt F; Frochot C; Fort Y; Lourette N; Guillemin F; Müller JF; Barberi-Heyob M
    Bioorg Med Chem; 2005 Apr; 13(8):2799-808. PubMed ID: 15781391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal proteins HMG-14 and HMG-17 are synthesized throughout the S-phase in Burkitt's lymphoma.
    Morton RL; David H; O'Connor PM; Bustin M
    Biochem Biophys Res Commun; 1996 May; 222(2):368-73. PubMed ID: 8670211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phototoxicity, redox behavior, and pharmacokinetics of benzophenoxazine analogues in EMT-6 murine sarcoma cells.
    Cincotta L; Foley JW; Cincotta AH
    Cancer Res; 1993 Jun; 53(11):2571-80. PubMed ID: 8495421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of CDDP cytotoxicity by caffeine is characterized by apoptotic cell death.
    Shinomiya N; Shinomiya M; Wakiyama H; Katsura Y; Rokutanda M
    Exp Cell Res; 1994 Feb; 210(2):236-42. PubMed ID: 8299722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photofrin uptake by murine macrophages.
    Korbelik M; Krosl G; Chaplin DJ
    Cancer Res; 1991 May; 51(9):2251-5. PubMed ID: 1826630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells.
    da Silva AR; Inada NM; Rettori D; Baratti MO; Vercesi AE; Jorge RA
    J Photochem Photobiol B; 2009 Feb; 94(2):101-12. PubMed ID: 19070504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-nitrosoglutathione photolysis as a novel therapy for antifibrosis in filtration surgery.
    Tannous M; Hutnik CM; Tingey DP; Mutus B
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):749-55. PubMed ID: 10711690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population pharmacokinetics of the photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a in cancer patients.
    Bellnier DA; Greco WR; Loewen GM; Nava H; Oseroff AR; Pandey RK; Tsuchida T; Dougherty TJ
    Cancer Res; 2003 Apr; 63(8):1806-13. PubMed ID: 12702566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-tumor effect of PDT using Photofrin in a mouse angiosarcoma model.
    Jin I; Yuji M; Yoshinori N; Makoto K; Mikio M
    Arch Dermatol Res; 2008 Apr; 300(4):161-6. PubMed ID: 18080130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro.
    Dysart JS; Patterson MS
    Phys Med Biol; 2005 Jun; 50(11):2597-616. PubMed ID: 15901957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.