These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 779644)

  • 1. Inhibitory effects of H2 on growth of Clostridium cellobioparum.
    Chung KT
    Appl Environ Microbiol; 1976 Mar; 31(3):342-8. PubMed ID: 779644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
    Russell JB; Dombrowski DB
    Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis.
    Le Van TD; Robinson JA; Ralph J; Greening RC; Smolenski WJ; Leedle JA; Schaefer DM
    Appl Environ Microbiol; 1998 Sep; 64(9):3429-36. PubMed ID: 9726893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of H(2) from cellulose by rumen microorganisms: effects of inocula pre-treatment and enzymatic hydrolysis.
    Ratti RP; Botta LS; Sakamoto IK; Silva EL; Varesche MB
    Biotechnol Lett; 2014 Mar; 36(3):537-46. PubMed ID: 24190478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of co-cultivation with the acetogen Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2.
    Rees EM; Lloyd D; Williams AG
    FEMS Microbiol Lett; 1995 Nov; 133(1-2):175-80. PubMed ID: 8566705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility and resistance of ruminal bacteria to antimicrobial feed additives.
    Nagaraja TG; Taylor MB
    Appl Environ Microbiol; 1987 Jul; 53(7):1620-5. PubMed ID: 3116929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum.
    Weimer PJ; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetic acid and hydrogen metabolism during coculture of an acetic acid producing bacterium with methanogenic bacteria.
    Patel GB; Roth LA
    Can J Microbiol; 1978 Aug; 24(8):1007-10. PubMed ID: 688097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria.
    Scheifinger CC; Linehan B; Wolin MJ
    Appl Microbiol; 1975 Apr; 29(4):480-3. PubMed ID: 804850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of hydrogen-producing bacteria in a repeated batch fermentation process using lake sediment as inoculum.
    Romano S; Paganin P; Varrone C; Tabacchioni S; Chiarini L
    Arch Microbiol; 2014 Feb; 196(2):97-107. PubMed ID: 24356911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production.
    Gomez-Flores M; Nakhla G; Hafez H
    Biotechnol Lett; 2015 Oct; 37(10):1965-71. PubMed ID: 26093605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium.
    Henderson C
    J Gen Microbiol; 1980 Aug; 119(2):485-91. PubMed ID: 6785381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A note on the fermentation of pectin by pure strains and combined cultures of rumen bacteria.
    SzymaƄski PT
    Acta Microbiol Pol; 1981; 30(2):159-63. PubMed ID: 6168176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometry of glucose and starch splitting by strains of amylolytic bacteria from the rumen and anaerobic digester.
    Marounek M; Bartos S
    J Appl Bacteriol; 1986 Jul; 61(1):81-6. PubMed ID: 3759723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.
    Kenealy WR; Cao Y; Weimer PJ
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):507-13. PubMed ID: 8597554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible occurrence of a Crabtree effect in the production of lactic and butyric acids by a floc-forming bacterial consortium.
    Thierie J; Penninckx MJ
    Curr Microbiol; 2004 Mar; 48(3):224-9. PubMed ID: 15057470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch.
    Marounek M; Bartos S
    J Appl Bacteriol; 1987 Sep; 63(3):233-8. PubMed ID: 3429358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.