These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 779653)

  • 1. DNA-directed in vitro synthesis of beta-galactosidase: dependencies on elongation factor Tu and tRNA.
    Kung HF; Spears C; Weissbach H
    Arch Biochem Biophys; 1976 May; 174(1):100-4. PubMed ID: 779653
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA-directed enzyme synthesis in vitro.
    Schweiger M; Herrlich P
    Curr Top Microbiol Immunol; 1974; 65():59-132. PubMed ID: 4613540
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor.
    Chinali G; Wolf H; Parmeggiani A
    Eur J Biochem; 1977 May; 75(1):55-65. PubMed ID: 193689
    [No Abstract]   [Full Text] [Related]  

  • 4. Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes.
    Gavrilova LP; Kostiashkina OE; Koteliansky VE; Rutkevitch NM; Spirin AS
    J Mol Biol; 1976 Mar; 101(4):537-52. PubMed ID: 772221
    [No Abstract]   [Full Text] [Related]  

  • 5. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the in vitro synthesis of beta-galactosidase: necessary components in the ribosomal wash.
    Kung HF; Spears C; Schulz T; Weissbach H
    Arch Biochem Biophys; 1974 Jun; 162(2):578-84. PubMed ID: 4600957
    [No Abstract]   [Full Text] [Related]  

  • 7. The binding of the pyrophosphoryl transferase and the elongation factor Tu and G to ribosomes from Escherichia coli.
    Kleinert U; Richter D
    FEBS Lett; 1975 Jul; 55(1):188-93. PubMed ID: 166884
    [No Abstract]   [Full Text] [Related]  

  • 8. Isomeric specificity of aminoacylation of wheat germ transfer ribonucleic acid and the specificity of interaction of elongation factor Tu with aminoacyl transfer ribonucleic acid.
    Julius DJ; Fraser TH; Rich A
    Biochemistry; 1979 Feb; 18(4):604-9. PubMed ID: 217420
    [No Abstract]   [Full Text] [Related]  

  • 9. The mRNA-directed synthesis of the alpha0peptide of beta-galactosidase, ribosomal proteins L12 and L10, and elongation factor Tu, using purified translational factors.
    Kung HF; Chu F; Caldwell P; Spears C; Treadwell BV; Eskin B; Brot N; Weissbach H
    Arch Biochem Biophys; 1978 Apr; 187(2):457-63. PubMed ID: 352269
    [No Abstract]   [Full Text] [Related]  

  • 10. Prevention of acylation of aminoacyl-tRNA bound in a complex with EF-Tu elongation factor.
    Sedlácek J; Jonák J; Rychlík I
    FEBS Lett; 1976 Oct; 68(2):208-10. PubMed ID: 789112
    [No Abstract]   [Full Text] [Related]  

  • 11. Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNA. Polyphenylalanine synthesis from phenylalanyl-tRNALys.
    Yusupova GZ; Belitsina NV; Spirin AS
    FEBS Lett; 1986 Sep; 206(1):142-6. PubMed ID: 3530807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination between D- and L-tyrosyl transfer ribonucleic acids in peptide chain elongation.
    Yamane T; Miller DL; Hopfield JJ
    Biochemistry; 1981 Dec; 20(25):7059-64. PubMed ID: 7032588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate of elongation of polyphenylalanine in vitro.
    Wagner EG; Jelenc PC; Ehrenberg M; Kurland CG
    Eur J Biochem; 1982 Feb; 122(1):193-7. PubMed ID: 7037399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative study of the interaction of aminoacyl-tRNA with the a site of Escherichia coli ribosomes: equilibrium and kinetic parameters of binding in the absence of EF-Tu factor and GTP.
    Kemkhadze KS; Odintsov VB; Semenkov YP; Kirillov SV
    FEBS Lett; 1981 Mar; 125(1):10-4. PubMed ID: 7014250
    [No Abstract]   [Full Text] [Related]  

  • 15. Activity of different forms of initiation factor 2 in the vitro synthesis of beta-galactosidase.
    Eskin B; Treadwell B; Redfield B; Spears C; Kung HF; Weissbach H
    Arch Biochem Biophys; 1978 Aug; 189(2):531-4. PubMed ID: 101145
    [No Abstract]   [Full Text] [Related]  

  • 16. Purification and properties of a soluble factor required for the deoxyribonucleic acid-directed in vitro synthesis of beta-galactosidase.
    Kung H; Spears C; Weissbach H
    J Biol Chem; 1975 Feb; 250(4):1556-62. PubMed ID: 1089661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid - ribosome complexes.
    San Millan MJ; Vazquez D; Modolell J
    Eur J Biochem; 1975 Sep; 57(2):431-40. PubMed ID: 1100406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition by elongation factor EF G of aminoacyl-tRNA binding to ribosomes.
    Cabrer B; Vázquez D; Modolell J
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):733-6. PubMed ID: 4551985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibition of ribosomal translocation by viomycin.
    Modolell J; Vázquez
    Eur J Biochem; 1977 Dec; 81(3):491-7. PubMed ID: 202460
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.