BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7796584)

  • 1. A computer program linking physiologically based pharmacokinetic model with cancer risk assessment for breast-fed infants.
    Byczkowski JZ; Fisher JW
    Comput Methods Programs Biomed; 1995 Feb; 46(2):155-63. PubMed ID: 7796584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactational transfer of tetrachloroethylene in rats.
    Byczkowski JZ; Fisher JW
    Risk Anal; 1994 Jun; 14(3):339-49. PubMed ID: 8029506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of the lactational transfer of tetrachloroethylene in rats using a physiologically based model.
    Byczkowski JZ; Kinkead ER; Leahy HF; Randall GM; Fisher JW
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):228-36. PubMed ID: 8171430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of physiologically based pharmacokinetic (PBPK) model parameters and their effects on PBPK model predictions in a risk assessment for perchloroethylene (PCE).
    Gearhart JM; Mahle DA; Greene RJ; Seckel CS; Flemming CD; Fisher JW; Clewell HJ
    Toxicol Lett; 1993 May; 68(1-2):131-44. PubMed ID: 8516760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking indoor air and pharmacokinetic models to assess tetrachloroethylene risk.
    Bogen KT; McKone TE
    Risk Anal; 1988 Dec; 8(4):509-20. PubMed ID: 3244858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of physiologically based pharmacokinetic models in risk assessment: an example with perchloroethylene.
    Clewell HJ; Gentry PR; Kester JE; Andersen ME
    Crit Rev Toxicol; 2005 Jun; 35(5):413-33. PubMed ID: 16097137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene.
    Dallas CE; Muralidhara S; Chen XM; Ramanathan R; Varkonyi P; Gallo JM; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a physiologically based pharmacokinetic model for perchloroethylene using tissue concentration-time data.
    Dallas CE; Chen XM; O'Barr K; Muralidhara S; Varkonyi P; Bruckner JV
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):50-9. PubMed ID: 8079354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactational transfer of volatile chemicals in breast milk.
    Fisher J; Mahle D; Bankston L; Greene R; Gearhart J
    Am Ind Hyg Assoc J; 1997 Jun; 58(6):425-31. PubMed ID: 9183837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics.
    Dallas CE; Chen XM; Muralidhara S; Varkonyi P; Tackett RL; Bruckner JV
    J Toxicol Environ Health; 1995 Mar; 44(3):301-17. PubMed ID: 7897693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetics of toxic chemicals in breast milk: use of PBPK models to predict infant exposure.
    Clewell RA; Gearhart JM
    Environ Health Perspect; 2002 Jun; 110(6):A333-7. PubMed ID: 12055064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute perchloroethylene exposure alters rat visual-evoked potentials in relation to brain concentrations.
    Boyes WK; Bercegeay M; Oshiro WM; Krantz QT; Kenyon EM; Bushnell PJ; Benignus VA
    Toxicol Sci; 2009 Mar; 108(1):159-72. PubMed ID: 19098276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiologically based pharmacokinetic modeling of the lactational transfer of methylmercury.
    Byczkowski JZ; Lipscomb JC
    Risk Anal; 2001 Oct; 21(5):869-82. PubMed ID: 11798123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted infant exposure to tetrachloroethene in human breastmilk.
    Schreiber JS
    Risk Anal; 1993 Oct; 13(5):515-24. PubMed ID: 8259441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective.
    Fisher W; Wang J; George NI; Gearhart JM; McLanahan ED
    PLoS One; 2016; 11(3):e0149300. PubMed ID: 26930410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene.
    Covington TR; Robinan Gentry P; Van Landingham CB; Andersen ME; Kester JE; Clewell HJ
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):1-18. PubMed ID: 16901594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of in vitro biotransformation data and pharmacokinetic modeling to risk assessment.
    Kedderis GL; Lipscomb JC
    Toxicol Ind Health; 2001 Jun; 17(5-10):315-21. PubMed ID: 12539878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat.
    Kirman CR; Hays SM; Kedderis GL; Gargas ML; Strother DE
    Risk Anal; 2000 Feb; 20(1):135-51. PubMed ID: 10795346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of
    Clewell HJ; Campbell JL; Van Landingham C; Franzen A; Yoon M; Dodd DE; Andersen ME; Gentry PR
    Inhal Toxicol; 2019; 31(13-14):468-483. PubMed ID: 31992090
    [No Abstract]   [Full Text] [Related]  

  • 20. PBPK modeling of the percutaneous absorption of perchloroethylene from a soil matrix in rats and humans.
    Poet TS; Weitz KK; Gies RA; Edwards JA; Thrall KD; Corley RA; Tanojo H; Hui X; Maibach HI; Wester RC
    Toxicol Sci; 2002 May; 67(1):17-31. PubMed ID: 11961212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.