BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7797470)

  • 1. Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier.
    Sánchez del Pino MM; Peterson DR; Hawkins RA
    J Biol Chem; 1995 Jun; 270(25):14913-8. PubMed ID: 7797470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral amino acid transport by the blood-brain barrier. Membrane vesicle studies.
    Sánchez del Pino MM; Hawkins RA; Peterson DR
    J Biol Chem; 1992 Dec; 267(36):25951-7. PubMed ID: 1464608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood-brain barrier.
    Sánchez del Pino MM; Hawkins RA; Peterson DR
    J Biol Chem; 1995 Jun; 270(25):14907-12. PubMed ID: 7797469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal.
    Lee WJ; Hawkins RA; Viña JR; Peterson DR
    Am J Physiol; 1998 Apr; 274(4):C1101-7. PubMed ID: 9580550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier.
    O'Kane RL; Hawkins RA
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1167-73. PubMed ID: 12933350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of the aromatic amino acids into isolated rat liver cells. Properties of uptake by two distinct systems.
    Salter M; Knowles RG; Pogson CI
    Biochem J; 1986 Jan; 233(2):499-506. PubMed ID: 3954748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney.
    Lynch AM; McGivan JD
    Biochim Biophys Acta; 1987 May; 899(2):176-84. PubMed ID: 3580363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple pathways for L-methionine transport in brush-border membrane vesicles from chicken jejunum.
    Soriano-García JF; Torras-Llort M; Ferrer R; Moreto M
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):527-39. PubMed ID: 9575301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of oxoproline in the regulation of neutral amino acid transport across the blood-brain barrier.
    Lee WJ; Hawkins RA; Peterson DR; Viña JR
    J Biol Chem; 1996 Aug; 271(32):19129-33. PubMed ID: 8702588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA.
    Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles.
    Stevens BR; Ross HJ; Wright EM
    J Membr Biol; 1982; 66(3):213-25. PubMed ID: 6808139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain microvessels take up large neutral amino acids in exchange for glutamine. Cooperative role of Na+-dependent and Na+-independent systems.
    Cangiano C; Cardelli-Cangiano P; James JH; Rossi-Fanelli F; Patrizi MA; Brackett KA; Strom R; Fischer JE
    J Biol Chem; 1983 Jul; 258(14):8949-54. PubMed ID: 6863319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of alpha-aminoisobutyric acid transport by lactating rat mammary gland.
    Shennan DB; McNeillie SA
    J Dairy Res; 1994 Feb; 61(1):9-19. PubMed ID: 8188948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutral amino acid transport in bovine articular chondrocytes.
    Barker GA; Wilkins RJ; Golding S; Ellory JC
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):795-808. PubMed ID: 9882751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutral amino acid transport in placental plasma membrane vesicles in the late pregnant rat. Evidence for a B0-like transport system.
    Carbó N; López-Soriano FJ; Argilés JM
    Eur J Obstet Gynecol Reprod Biol; 1997 Jan; 71(1):85-90. PubMed ID: 9031965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose transporter asymmetries in the bovine blood-brain barrier.
    Simpson IA; Vannucci SJ; DeJoseph MR; Hawkins RA
    J Biol Chem; 2001 Apr; 276(16):12725-9. PubMed ID: 11278779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of glutamine in Xenopus laevis oocytes: relationship with transport of other amino acids.
    Taylor PM; Hundal HS; Rennie MJ
    J Membr Biol; 1989 Dec; 112(2):149-57. PubMed ID: 2621745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamine transport by basolateral plasma-membrane vesicles prepared from rabbit intestine.
    Wilde SW; Kilberg MS
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):687-91. PubMed ID: 1908221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells.
    Prasad PD; Leibach FH; Mahesh VB; Ganapathy V
    Endocrinology; 1994 Feb; 134(2):574-81. PubMed ID: 8299556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.