BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7797521)

  • 1. Potassium channel structure and function as reported by a single glycosylation sequon.
    Schwalbe RA; Wang Z; Wible BA; Brown AM
    J Biol Chem; 1995 Jun; 270(25):15336-40. PubMed ID: 7797521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
    Schwalbe RA; Bianchi L; Brown AM
    J Biol Chem; 1997 Oct; 272(40):25217-23. PubMed ID: 9312136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase.
    Xu ZC; Yang Y; Hebert SC
    J Biol Chem; 1996 Apr; 271(16):9313-9. PubMed ID: 8621594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms.
    Boim MA; Ho K; Shuck ME; Bienkowski MJ; Block JH; Slightom JL; Yang Y; Brenner BM; Hebert SC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1132-40. PubMed ID: 7611454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel sites of N-glycosylation in ROMK1 reveal the putative pore-forming segment H5 as extracellular.
    Schwalbe RA; Wang Z; Bianchi L; Brown AM
    J Biol Chem; 1996 Sep; 271(39):24201-6. PubMed ID: 8798662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed glycosylation tagging of functional Kir2.1 reveals that the putative pore-forming segment is extracellular.
    Schwalbe RA; Rudin A; Xia SL; Wingo CS
    J Biol Chem; 2002 Jul; 277(27):24382-9. PubMed ID: 11991952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition.
    Macica CM; Yang Y; Lerea K; Hebert SC; Wang W
    Am J Physiol; 1998 Jan; 274(1):F175-81. PubMed ID: 9458837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three distinct structural environments of a transmembrane domain in the inwardly rectifying potassium channel ROMK1 defined by perturbation.
    Choe S; Stevens CF; Sullivan JM
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12046-9. PubMed ID: 8618841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms.
    Leung YM; Zeng WZ; Liou HH; Solaro CR; Huang CL
    J Biol Chem; 2000 Apr; 275(14):10182-9. PubMed ID: 10744702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of N-glycosylation consensus sequences in the Kv3.1 channel.
    Brooks NL; Corey MJ; Schwalbe RA
    FEBS J; 2006 Jul; 273(14):3287-300. PubMed ID: 16792699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function.
    Pabon A; Chan KW; Sui JL; Wu X; Logothetis DE; Thornhill WB
    J Biol Chem; 2000 Sep; 275(39):30677-82. PubMed ID: 10889209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast.
    Uozumi N; Gassmann W; Cao Y; Schroeder JI
    J Biol Chem; 1995 Oct; 270(41):24276-81. PubMed ID: 7592636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells.
    Zimmermann S; Talke I; Ehrhardt T; Nast G; Müller-Röber B
    Plant Physiol; 1998 Mar; 116(3):879-90. PubMed ID: 9501121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation.
    Bravo-Zehnder M; Orio P; Norambuena A; Wallner M; Meera P; Toro L; Latorre R; González A
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13114-9. PubMed ID: 11069304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of monomeric and multimeric GIRK4 subunits in rat atrial myocytes removes fast desensitization and reduces inward rectification of muscarinic K(+) current (I(K(ACh))). Evidence for functional homomeric GIRK4 channels.
    Bender K; Wellner-Kienitz MC; Inanobe A; Meyer T; Kurachi Y; Pott L
    J Biol Chem; 2001 Aug; 276(31):28873-80. PubMed ID: 11384974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line.
    Ashen MD; O'Rourke B; Kluge KA; Johns DC; Tomaselli GF
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H506-11. PubMed ID: 7840300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure and functional properties of an epithelial K channel.
    Zhou H; Tate SS; Palmer LG
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C809-24. PubMed ID: 8166245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge.
    Lesage F; Reyes R; Fink M; Duprat F; Guillemare E; Lazdunski M
    EMBO J; 1996 Dec; 15(23):6400-7. PubMed ID: 8978667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation.
    Wischmeyer E; Döring F; Karschin A
    J Biol Chem; 1998 Dec; 273(51):34063-8. PubMed ID: 9852063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glutamate residue at the C terminus regulates activity of inward rectifier K+ channels: implication for Andersen's syndrome.
    Chen L; Kawano T; Bajic S; Kaziro Y; Itoh H; Art JJ; Nakajima Y; Nakajima S
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8430-5. PubMed ID: 12034888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.