These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7797536)

  • 1. Role of heterogeneous N-terminal acylation of recoverin in rhodopsin phosphorylation.
    Sanada K; Kokame K; Yoshizawa T; Takao T; Shimonishi Y; Fukada Y
    J Biol Chem; 1995 Jun; 270(26):15459-62. PubMed ID: 7797536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase.
    Senin II; Zargarov AA; Alekseev AM; Gorodovikova EN; Lipkin VM; Philippov PP
    FEBS Lett; 1995 Nov; 376(1-2):87-90. PubMed ID: 8521974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent regulation of rhodopsin phosphorylation.
    Kawamura S
    Novartis Found Symp; 1999; 224():208-18; discussion 218-24. PubMed ID: 10614053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin.
    Kawamura S; Cox JA; Nef P
    Biochem Biophys Res Commun; 1994 Aug; 203(1):121-7. PubMed ID: 8074645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation.
    Sanada K; Shimizu F; Kameyama K; Haga K; Haga T; Fukada Y
    FEBS Lett; 1996 Apr; 384(3):227-30. PubMed ID: 8617359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction.
    Klenchin VA; Calvert PD; Bownds MD
    J Biol Chem; 1995 Jul; 270(27):16147-52. PubMed ID: 7608179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells.
    Gorodovikova EN; Gimelbrant AA; Senin II; Philippov PP
    FEBS Lett; 1994 Aug; 349(2):187-90. PubMed ID: 8050563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase.
    Chen CK; Inglese J; Lefkowitz RJ; Hurley JB
    J Biol Chem; 1995 Jul; 270(30):18060-6. PubMed ID: 7629115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-sensitive control of rhodopsin phosphorylation in the reconstituted system consisting of photoreceptor membranes, rhodopsin kinase and recoverin.
    Gorodovikova EN; Senin II; Philippov PP
    FEBS Lett; 1994 Oct; 353(2):171-2. PubMed ID: 7926045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the acylated amino terminus of recoverin in Ca(2+)-dependent membrane interaction.
    Dizhoor AM; Chen CK; Olshevskaya E; Sinelnikova VV; Phillipov P; Hurley JB
    Science; 1993 Feb; 259(5096):829-32. PubMed ID: 8430337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase.
    Senin II; Koch KW; Akhtar M; Philippov PP
    Adv Exp Med Biol; 2002; 514():69-99. PubMed ID: 12596916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids.
    Dizhoor AM; Ericsson LH; Johnson RS; Kumar S; Olshevskaya E; Zozulya S; Neubert TA; Stryer L; Hurley JB; Walsh KA
    J Biol Chem; 1992 Aug; 267(23):16033-6. PubMed ID: 1386601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous N-acylation is a tissue- and species-specific posttranslational modification.
    Johnson RS; Ohguro H; Palczewski K; Hurley JB; Walsh KA; Neubert TA
    J Biol Chem; 1994 Aug; 269(33):21067-71. PubMed ID: 8063726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila neurocalcin, a fatty acylated, Ca2+-binding protein that associates with membranes and inhibits in vitro phosphorylation of bovine rhodopsin.
    Faurobert E; Chen CK; Hurley JB; Teng DH
    J Biol Chem; 1996 Apr; 271(17):10256-62. PubMed ID: 8626592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of recombinant recoverin on the photoresponse of truncated rod photoreceptors.
    Erickson MA; Lagnado L; Zozulya S; Neubert TA; Stryer L; Baylor DA
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6474-9. PubMed ID: 9600991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin phosphorylation in bovine rod outer segments is more sensitive to the inhibitory action of recoverin at the low rhodopsin bleaching than it is at the high bleaching.
    Senin II; Zargarov AA; Akhtar M; Philippov PP
    FEBS Lett; 1997 May; 408(3):251-4. PubMed ID: 9188771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors.
    De Castro E; Nef S; Fiumelli H; Lenz SE; Kawamura S; Nef P
    Biochem Biophys Res Commun; 1995 Nov; 216(1):133-40. PubMed ID: 7488079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.