These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 779772)
41. Comparison of active and inactive forms of iron protein from Rhodospirillum rubrum. Ludden PW; Preston GG; Dowling TE Biochem J; 1982 Jun; 203(3):663-8. PubMed ID: 6810874 [TBL] [Abstract][Full Text] [Related]
42. Isolation and characterization of nitrogenase MoFe protein from the mutant strain pHK17 of Klebsiella pneumoniae in which the two bridging cysteine residues of the P-clusters are replaced by the non-coordinating amino acid alanine. Yousafzai FK; Buck M; Smith BE Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):111-8. PubMed ID: 8761459 [TBL] [Abstract][Full Text] [Related]
43. Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum. Robson RL Biochem J; 1979 Sep; 181(3):569-75. PubMed ID: 518541 [TBL] [Abstract][Full Text] [Related]
44. Vanadium nitrogenase of Azotobacter chroococcum. MgATP-dependent electron transfer within the protein complex. Thorneley RN; Bergström NH; Eady RR; Lowe DJ Biochem J; 1989 Feb; 257(3):789-94. PubMed ID: 2784670 [TBL] [Abstract][Full Text] [Related]
45. Immunofluorescence detection of nitrogenase proteins in whole cells. Rennie RJ J Gen Microbiol; 1976 Dec; 97(2):289-96. PubMed ID: 796412 [TBL] [Abstract][Full Text] [Related]
46. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism. Smith BE; Thorneley RN; Eady RR; Mortenson LE Biochem J; 1976 Aug; 157(2):439-47. PubMed ID: 134700 [TBL] [Abstract][Full Text] [Related]
47. Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase. Pienkos PT; Shah VK; Brill WJ Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5468-71. PubMed ID: 146198 [TBL] [Abstract][Full Text] [Related]
48. Immunological evidence for the capability of free-living Rhizobium japonicum to synthesize a portion of a nitrogenase component. Bishop PE; Evans HJ; Daniel RM; Hampton RO Biochim Biophys Acta; 1975 Feb; 381(2):248-56. PubMed ID: 803382 [TBL] [Abstract][Full Text] [Related]
49. A Mössbauer spectroscopic investigation of the redox behaviour of the molybdenum-iron protein from Klebsiella pneumoniae nitrogenase. Mechanistic and structural implications. Smith BE; O'Donnell MJ; Lang G; Spartalian K Biochem J; 1980 Nov; 191(2):449-55. PubMed ID: 7016110 [TBL] [Abstract][Full Text] [Related]
50. Identification of iron-sulfur centers in the iron-molybdenum proteins of nitrogenase. Kurtz DM; McMillan RS; Burgess BK; Mortenson LE; Holm RH Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4986-9. PubMed ID: 291915 [TBL] [Abstract][Full Text] [Related]
51. Structure-function relationships in the alpha subunit of Klebsiella pneumoniae nitrogenase MoFe protein from analysis of nifD mutants. Govezensky D; Zamir A J Bacteriol; 1989 Oct; 171(10):5729-35. PubMed ID: 2676989 [TBL] [Abstract][Full Text] [Related]
52. Purification of nitrogenase and crystallization of its Mo-Fe protein. Burns RC; Hardy RW Methods Enzymol; 1972; 24():480-96. PubMed ID: 4362294 [No Abstract] [Full Text] [Related]
53. Nitrogenase of Klebsiella pneumoniae: kinetics of formation of the transition-state complex and evidence for an altered conformation of MoFe protein lacking a FeMoco centre. Yousafzai FK; Eady RR Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):637-40. PubMed ID: 9307010 [TBL] [Abstract][Full Text] [Related]
54. Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor. Hawkes TR; McLean PA; Smith BE Biochem J; 1984 Jan; 217(1):317-21. PubMed ID: 6320803 [TBL] [Abstract][Full Text] [Related]
55. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Shah VK; Imperial J; Ugalde RA; Ludden PW; Brill WJ Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1636-40. PubMed ID: 3006060 [TBL] [Abstract][Full Text] [Related]
56. The inactive MoFe protein (NifB-Kp1) of the nitrogenase from nifB mutants of Klebsiella pneumoniae. Its interaction with FeMo-cofactor and the properties of the active MoFe protein formed. Hawkes TR; Smith BE Biochem J; 1984 Nov; 223(3):783-92. PubMed ID: 6095809 [TBL] [Abstract][Full Text] [Related]
57. Electron transfer to nitrogenase. Characterization of flavodoxin from Azotobacter chroococcum and comparison of its redox potentials with those of flavodoxins from Azotobacter vinelandii and Klebsiella pneumoniae (nifF-gene product). Deistung J; Thorneley RN Biochem J; 1986 Oct; 239(1):69-75. PubMed ID: 3541922 [TBL] [Abstract][Full Text] [Related]
58. Isolation of a molybdenum--iron cluster from nitrogenase. Shah VK; Brill WJ Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3438-40. PubMed ID: 6267591 [TBL] [Abstract][Full Text] [Related]
59. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. Schlessman JL; Woo D; Joshua-Tor L; Howard JB; Rees DC J Mol Biol; 1998 Jul; 280(4):669-85. PubMed ID: 9677296 [TBL] [Abstract][Full Text] [Related]
60. Molybdenum independence of nitrogenase component synthesis in the non-heterocystous cyanobacterium Plectonema. Nagatani HH; Haselkorn R J Bacteriol; 1978 May; 134(2):597-605. PubMed ID: 96092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]