These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 7798152)
1. Nicotinate catabolism is dispensable and nicotinate anabolism is crucial in Azorhizobium caulinodans growing in batch culture and chemostat culture on N2 as The N source. Pronk AF; Stouthamer AH; Van Verseveld HW; Boogerd FC J Bacteriol; 1995 Jan; 177(1):75-81. PubMed ID: 7798152 [TBL] [Abstract][Full Text] [Related]
2. Cloning of Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance in N2 fixation. Buckmiller LM; Lapointe JP; Ludwig RA J Bacteriol; 1991 Mar; 173(6):2017-25. PubMed ID: 2002004 [TBL] [Abstract][Full Text] [Related]
3. Identification of cyclic intermediates in Azorhizobium caulinodans nicotinate catabolism. Kitts CL; Schaechter LE; Rabin RS; Ludwig RA J Bacteriol; 1989 Jun; 171(6):3406-11. PubMed ID: 2722754 [TBL] [Abstract][Full Text] [Related]
4. Elucidation of the complete Azorhizobium nicotinate catabolism pathway. Kitts CL; Lapointe JP; Lam VT; Ludwig RA J Bacteriol; 1992 Dec; 174(23):7791-7. PubMed ID: 1447145 [TBL] [Abstract][Full Text] [Related]
5. Azorhizobium caulinodans respires with at least four terminal oxidases. Kitts CL; Ludwig RA J Bacteriol; 1994 Feb; 176(3):886-95. PubMed ID: 8300541 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Uptake and Hydrogen-Stimulated Nitrogenase Activity from Azorhizobium caulinodans ORS571 Grown in a Succinate-Limited Chemostat. Allen GC; Grimm DT; Elkan GH Appl Environ Microbiol; 1991 Nov; 57(11):3220-5. PubMed ID: 16348585 [TBL] [Abstract][Full Text] [Related]
7. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation. Kaminski PA; Kitts CL; Zimmerman Z; Ludwig RA J Bacteriol; 1996 Oct; 178(20):5989-94. PubMed ID: 8830696 [TBL] [Abstract][Full Text] [Related]
8. In situ determination of the reduction levels of cytochromes b and c in growing bacteria: a case study with N2-fixing Azorhizobium caulinodans. Pronk AF; Boogerd FC; Stoof C; Oltmann LF; Stouthamer AH; van Verseveld HW Anal Biochem; 1993 Oct; 214(1):149-55. PubMed ID: 8250218 [TBL] [Abstract][Full Text] [Related]
9. Oxygen protection of nitrogen fixation in free-living Azorhizobium caulinodans: the role of cytochrome aa Boogerd FC; Pronk AF; Mashingaidze C; Affourtit C; Stouthamer AH; van Verseveld HW; Westerhoff HV Microbiology (Reading); 1998 Jul; 144(7):1773-1782. PubMed ID: 33757228 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen oxidation and nitrogen fixation in rhizobia, with special attention focused on strain ORS 571. de Vries W; Stam H; Stouthamer AH Antonie Van Leeuwenhoek; 1984; 50(5-6):505-24. PubMed ID: 6397131 [TBL] [Abstract][Full Text] [Related]
11. Azorhizobium caulinodans pyruvate dehydrogenase activity is dispensable for aerobic but required for microaerobic growth. Pauling DC; Lapointe JP; Paris CM; Ludwig RA Microbiology (Reading); 2001 Aug; 147(Pt 8):2233-2245. PubMed ID: 11496000 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of N2 fixation in Mo-limited batch and continuous cultures of Azotobacter vinelandii. Eady RR; Robson RL Biochem J; 1984 Dec; 224(3):853-62. PubMed ID: 6596950 [TBL] [Abstract][Full Text] [Related]
13. Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat. Daugherty DD; Karel SF Appl Environ Microbiol; 1994 Sep; 60(9):3261-7. PubMed ID: 7524443 [TBL] [Abstract][Full Text] [Related]
14. Rhizobium sp. strain ORS571 grows synergistically on N2 and nicotinate as N sources. Ludwig RA J Bacteriol; 1986 Jan; 165(1):304-7. PubMed ID: 3753598 [TBL] [Abstract][Full Text] [Related]
15. The effect of the dissolved oxygen concentration and anabolic limitations on the behaviour of Rhizobium ORS571 in chemostat cultures. de Vries W; Stam H; Duys JG; Ligtenberg AJ; Simons LH; Stouthamer AH Antonie Van Leeuwenhoek; 1986; 52(1):85-96. PubMed ID: 3524445 [TBL] [Abstract][Full Text] [Related]
16. The role of oxygen limitation in the formation of poly- -hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Senior PJ; Beech GA; Ritchie GA; Dawes EA Biochem J; 1972 Aug; 128(5):1193-201. PubMed ID: 4643700 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen Fixation and Hydrogen Metabolism in Relation to the Dissolved Oxygen Tension in Chemostat Cultures of the Wild Type and a Hydrogenase-Negative Mutant of Azorhizobium caulinodans. Boogerd FC; Ferdinandy-van Vlerken MM; Mawadza C; Pronk AF; Stouthamer AH; van Verseveld HW Appl Environ Microbiol; 1994 Jun; 60(6):1859-66. PubMed ID: 16349280 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen fixation in molybdenum-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Bishop PE; Hawkins ME; Eady RR Biochem J; 1986 Sep; 238(2):437-42. PubMed ID: 3467721 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources. Durner R; Zinn M; Witholt B; Egli T Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197 [TBL] [Abstract][Full Text] [Related]
20. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures. Piñar G; Kovárová K; Egli T; Ramos JL Appl Environ Microbiol; 1998 Aug; 64(8):2970-6. PubMed ID: 9687459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]