BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7798183)

  • 21. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
    Protasova NYu ; Kireeva ML; Murzina NV; Murzin AG; Uversky VN; Gryaznova OI; Gudkov AT
    Protein Eng; 1994 Nov; 7(11):1373-7. PubMed ID: 7700869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High resistance of Escherichia coli ribonuclease HI variant with quintuple thermostabilizing mutations to thermal denaturation, acid denaturation, and proteolytic degradation.
    Akasako A; Haruki M; Oobatake M; Kanaya S
    Biochemistry; 1995 Jun; 34(25):8115-22. PubMed ID: 7794925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The function of amino acid residues contacting the nicotinamide ring of NADPH in dihydrofolate reductase from Escherichia coli.
    Adams JA; Fierke CA; Benkovic SJ
    Biochemistry; 1991 Nov; 30(46):11046-54. PubMed ID: 1834173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis for nonadditive mutational effects in Escherichia coli dihydrofolate reductase.
    Wagner CR; Huang Z; Singleton SF; Benkovic SJ
    Biochemistry; 1995 Dec; 34(48):15671-80. PubMed ID: 7495797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the length of a glycine linker connecting the N-and C-termini of a circularly permuted dihydrofolate reductase.
    Iwakura M; Nakamura T
    Protein Eng; 1998 Aug; 11(8):707-13. PubMed ID: 9749924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the roles of conserved arginine-44 of Escherichia coli dihydrofolate reductase in its function and stability by systematic sequence perturbation analysis.
    Yokota A; Takahashi H; Takenawa T; Arai M
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1703-7. PubMed ID: 20043879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of cavity-modulating mutations on the stability of Escherichia coli ribonuclease HI.
    Kimura S; Oda Y; Nakai T; Katayanagi K; Kitakuni E; Nakai C; Nakamura H; Ikehara M; Kanaya S
    Eur J Biochem; 1992 Jun; 206(2):337-43. PubMed ID: 1317795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase.
    Thorpe IF; Brooks CL
    Proteins; 2004 Nov; 57(3):444-57. PubMed ID: 15382243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability and reversibility of thermal denaturation are greatly improved by limiting terminal flexibility of Escherichia coli dihydrofolate reductase.
    Iwakura M; Honda S
    J Biochem; 1996 Mar; 119(3):414-20. PubMed ID: 8830033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence perturbation analysis: addressing amino acid indices to elucidate the C-terminal role of Escherichia coli dihydrofolate reductase.
    Takahashi H; Yokota A; Takenawa T; Iwakura M
    J Biochem; 2009 Jun; 145(6):751-62. PubMed ID: 19254927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased thermal stability of site-selectively glycosylated dihydrofolate reductase.
    Swanwick RS; Daines AM; Tey LH; Flitsch SL; Allemann RK
    Chembiochem; 2005 Aug; 6(8):1338-40. PubMed ID: 16003807
    [No Abstract]   [Full Text] [Related]  

  • 33. Coupling effects of distal loops on structural stability and enzymatic activity of Escherichia coli dihydrofolate reductase revealed by deletion mutants.
    Horiuchi Y; Ohmae E; Tate S; Gekko K
    Biochim Biophys Acta; 2010 Apr; 1804(4):846-55. PubMed ID: 20045086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase.
    Bashir A; Perham RN; Scrutton NS; Berry A
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):527-33. PubMed ID: 8526866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A strategy for testing the suitability of cysteine replacements in dihydrofolate reductase from Escherichia coli.
    Iwakura M; Jones BE; Luo J; Matthews CR
    J Biochem; 1995 Mar; 117(3):480-8. PubMed ID: 7629011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circular permutation analysis as a method for distinction of functional elements in the M20 loop of Escherichia coli dihydrofolate reductase.
    Nakamura T; Iwakura M
    J Biol Chem; 1999 Jul; 274(27):19041-7. PubMed ID: 10383405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed mutagenesis of dihydrofolate reductase.
    Villafranca JE; Howell EE; Voet DH; Strobel MS; Ogden RC; Abelson JN; Kraut J
    Science; 1983 Nov; 222(4625):782-8. PubMed ID: 6356360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity.
    Yuan J; Martinez-Bilbao M; Huber RE
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):527-31. PubMed ID: 7909660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative stability of dihydrofolate reductase mutants in vitro and in vivo.
    Leontiev VV; Uversky VN; Gudkov AT
    Protein Eng; 1993 Jan; 6(1):81-4. PubMed ID: 8433973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of single amino acid replacements on the folding and stability of dihydrofolate reductase from Escherichia coli.
    Perry KM; Onuffer JJ; Touchette NA; Herndon CS; Gittelman MS; Matthews CR; Chen JT; Mayer RJ; Taira K; Benkovic SJ
    Biochemistry; 1987 May; 26(10):2674-82. PubMed ID: 3300767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.