BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7798196)

  • 1. Evidence of a self-catalytic mechanism of 2,4,5-trihydroxyphenylalanine quinone biogenesis in yeast copper amine oxidase.
    Cai D; Klinman JP
    J Biol Chem; 1994 Dec; 269(51):32039-42. PubMed ID: 7798196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
    Hevel JM; Mills SA; Klinman JP
    Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast.
    Schwartz B; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1998 Nov; 37(47):16591-600. PubMed ID: 9843426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of conserved Asn-Tyr-Asp-Tyr sequence in bacterial copper/2,4, 5-trihydroxyphenylalanyl quinone-containing histamine oxidase.
    Choi YH; Matsuzaki R; Suzuki S; Tanizawa K
    J Biol Chem; 1996 Sep; 271(37):22598-603. PubMed ID: 8798429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of spectroscopic intermediates during copper-binding and TPQ formation in wild-type and active-site mutants of a copper-containing amine oxidase from yeast.
    Dove JE; Schwartz B; Williams NK; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3690-8. PubMed ID: 10736168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast.
    Schwartz B; Olgin AK; Klinman JP
    Biochemistry; 2001 Mar; 40(9):2954-63. PubMed ID: 11258907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha.
    DuBois JL; Klinman JP
    Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective.
    Brazeau BJ; Johnson BJ; Wilmot CM
    Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenesis of novel quinone coenzymes.
    Tanizawa K
    J Biochem; 1995 Oct; 118(4):671-8. PubMed ID: 8576075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen Activation Switch in the Copper Amine Oxidase of Escherichia coli.
    Gaule TG; Smith MA; Tych KM; Pirrat P; Trinh CH; Pearson AR; Knowles PF; McPherson MJ
    Biochemistry; 2018 Sep; 57(36):5301-5314. PubMed ID: 30110143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
    Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H
    Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of metal on 2,4,5-trihydroxyphenylalanine (topa) quinone biogenesis in the Hansenula polymorpha copper amine oxidase.
    Cai D; Williams NK; Klinman JP
    J Biol Chem; 1997 Aug; 272(31):19277-81. PubMed ID: 9235922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and biogenesis of topaquinone and related cofactors.
    Dooley DM
    J Biol Inorg Chem; 1999 Feb; 4(1):1-11. PubMed ID: 10499097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor.
    Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K
    Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis.
    Matsuzaki R; Tanizawa K
    Biochemistry; 1998 Oct; 37(40):13947-57. PubMed ID: 9760229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel.
    Samuels NM; Klinman JP
    Biochemistry; 2005 Nov; 44(43):14308-17. PubMed ID: 16245947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Cu(I)-dependent 2,4,5-trihydroxyphenylalanine quinone biogenesis in Hansenula polymorpha amine oxidase.
    Samuels NM; Klinman JP
    J Biol Chem; 2006 Jul; 281(30):21114-21118. PubMed ID: 16717088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases.
    Ling KQ; Sayre LM
    J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of oxygen utilization during cofactor biogenesis in a copper-containing amine oxidase from yeast.
    Schwartz B; Dove JE; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3699-707. PubMed ID: 10736169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase.
    Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K
    Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.