These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 779828)
21. Kinetic mechanism of the single-stranded DNA recognition by Escherichia coli replicative helicase DnaB protein. Application of the matrix projection operator technique to analyze stopped-flow kinetics. Bujalowski W; Jezewska MJ J Mol Biol; 2000 Jan; 295(4):831-52. PubMed ID: 10656794 [TBL] [Abstract][Full Text] [Related]
22. Dissociation kinetics of complexes between the antibiotic rifamycin and DNA-dependent RNA polymerase from Escherichia coli. Stender W; Scheit KH Eur J Biochem; 1976 Jun; 65(2):333-9. PubMed ID: 780105 [TBL] [Abstract][Full Text] [Related]
23. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction. Szafrański P; Smagowicz WJ; Wierzchowski KL Acta Biochim Pol; 1985; 32(4):329-49. PubMed ID: 3938589 [TBL] [Abstract][Full Text] [Related]
24. Steady state kinetic studies of initiation of RNA synthesis on T7 DNA in the presence of rifampicin. Smagowicz JW; Scheit KH Nucleic Acids Res; 1977 Nov; 4(11):3863-76. PubMed ID: 593891 [TBL] [Abstract][Full Text] [Related]
25. Interaction of sigma factor sigmaN with Escherichia coli RNA polymerase core enzyme. Scott DJ; Ferguson AL; Gallegos MT; Pitt M; Buck M; Hoggett JG Biochem J; 2000 Dec; 352 Pt 2(Pt 2):539-47. PubMed ID: 11085949 [TBL] [Abstract][Full Text] [Related]
26. [Methylation of E. coli RNA polymerase with dimethylsulfate]. Chenchik AA; Bibilashvili RSh Mol Biol (Mosk); 1977; 11(2):403-9. PubMed ID: 379599 [TBL] [Abstract][Full Text] [Related]
27. Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase. Johnson RS; Strausbauch M; Carraway JK J Mol Biol; 2011 Oct; 412(5):849-61. PubMed ID: 21624374 [TBL] [Abstract][Full Text] [Related]
28. Bacteriophage T7 E promoter: identification and measurement of kinetics of association with Escherichia coli RNA polymerase. Prosen DE; Cech CL Biochemistry; 1985 Apr; 24(9):2219-27. PubMed ID: 3922411 [TBL] [Abstract][Full Text] [Related]
29. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861 [TBL] [Abstract][Full Text] [Related]
30. On the mechanism of rifampicin inhibition of RNA synthesis. McClure WR; Cech CL J Biol Chem; 1978 Dec; 253(24):8949-56. PubMed ID: 363713 [TBL] [Abstract][Full Text] [Related]
31. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
32. A resonance Raman study on the interaction of rifampicin with Escherichia coli RNA polymerase. Johnson RS Biochim Biophys Acta; 1985 Mar; 839(1):16-25. PubMed ID: 3884050 [TBL] [Abstract][Full Text] [Related]
33. Temperature and salt effects on the formation of preinitiation complexes between RNA polymerase and phage DNA. Escarmis C; Domingo E; Warner RC Biochim Biophys Acta; 1975 Aug; 402(2):261-9. PubMed ID: 1100115 [TBL] [Abstract][Full Text] [Related]
34. Micro-analysis of pure deoxyribonucleic acid-dependent ribonucleic acid polymerase from Escherichia coli. Action of heparin and rifampicin on structure and function. Neuhoff V; Schill WB; Sternbach H Biochem J; 1970 Apr; 117(3):623-31. PubMed ID: 4246161 [TBL] [Abstract][Full Text] [Related]
35. Binding of Escherichia coli ribonucleic acid polymerase holoenzyme to a bacteriophage T7 promoter-containing fragment: evaluation of promoter binding constants as a function of solution conditions. Strauss HS; Burgess RR; Record MT Biochemistry; 1980 Jul; 19(15):3504-15. PubMed ID: 6996705 [TBL] [Abstract][Full Text] [Related]
36. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus. Ohnishi M; Yamashita T; Hiromi K J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140 [TBL] [Abstract][Full Text] [Related]
37. Thermodynamic and kinetic measurements of promoter binding by T7 RNA polymerase. Ujvári A; Martin CT Biochemistry; 1996 Nov; 35(46):14574-82. PubMed ID: 8931555 [TBL] [Abstract][Full Text] [Related]
38. Primed abortive initiation of RNA synthesis by E. coli RNA polymerase on T7 DNA. Steady state kinetic studies. Smagowicz WJ; Scheit KH Nucleic Acids Res; 1978 Jun; 5(6):1919-32. PubMed ID: 353734 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Anderson KS; Sikorski JA; Johnson KA Biochemistry; 1988 Mar; 27(5):1604-10. PubMed ID: 3284585 [TBL] [Abstract][Full Text] [Related]
40. [RNA polymerase of a rifampicin-resistant mutant of Escherichia coli has an altered selectivity to phage T7 DNA promoters]. Ozolin' ON; Uteshev TA; Kamzolova SG Mol Biol (Mosk); 1988; 22(2):384-92. PubMed ID: 3292894 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]