These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7798282)

  • 1. Pressure development within a sac-type pneumatically driven ventricular assist device.
    Jin W; Clark C
    J Biomech; 1994 Nov; 27(11):1319-29. PubMed ID: 7798282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of the motions of the pumping diaphragm within a sac-type pneumatically driven ventricular assist device.
    Jin W; Clark C
    J Biomech; 1994 Jan; 27(1):43-55. PubMed ID: 8106535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD).
    Jin W; Clark C
    J Biomech; 1993 Jun; 26(6):697-707. PubMed ID: 8514814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrohydraulic ventricular assist device development.
    Diegel PD; Mussivand T; Holfert JW; Nahon D; Miller J; Maclean GK; Santerre JP; Bearnson GB; Juretich J; Hansen AC
    ASAIO Trans; 1991; 37(3):M206-7. PubMed ID: 1751113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ventricular assist device volume compensation using a two phase fluid.
    Lamson TC; Geselowitz DB; Tarbell JM
    ASAIO Trans; 1990; 36(3):M269-73. PubMed ID: 2252675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the compliance of the pump housing and cannulas of a paracorporeal pneumatic ventricular assist device on transient pressure characteristics.
    Ogino H; Klangsuk N; Jin W; Bowles CT; Yacoub MH
    Artif Organs; 1995 Jun; 19(6):525-34. PubMed ID: 8526792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow simulation of a diaphragm-type ventricular assist device with structural interactions.
    Moosavi MH; Fatouraee N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1027-30. PubMed ID: 18002135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device.
    Shi Y; Korakianitis T
    Artif Organs; 2006 Dec; 30(12):929-48. PubMed ID: 17181834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillometric measurement of arterial pulse pressure for patients supported by a rotary blood pump.
    Yu YC; Peterson A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3311-4. PubMed ID: 26737000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.
    Lee JJ; Kim BS; Choi J; Choi H; Ahn CB; Nam KW; Jeong GS; Lim CH; Son HS; Sun K
    Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols.
    Slaughter MS; Sobieski MA; Koenig SC; Pappas PS; Tatooles AJ; Silver MA
    ASAIO J; 2006; 52(3):228-33. PubMed ID: 16760709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow mixing and fluid residence times in a model of a ventricular assist device.
    König CS; Clark C
    Med Eng Phys; 2001 Mar; 23(2):99-110. PubMed ID: 11413062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control strategies for afterload reduction with an artificial vasculature device.
    Giridharan GA; Cheng RC; Glower JS; Ewert DL; Sobieski MA; Slaughter MS; Koenig SC
    ASAIO J; 2012; 58(4):353-62. PubMed ID: 22635010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling, analysis, and validation of a pneumatically driven left ventricle for use in mock circulatory systems.
    Colacino FM; Arabia M; Moscato F; Danieli GA
    Med Eng Phys; 2007 Oct; 29(8):829-39. PubMed ID: 17055763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tubular pediatric ventricular assist device. Design considerations and system characteristics.
    Kung RT; Champsaur GL
    ASAIO J; 1996; 42(4):255-62. PubMed ID: 8828780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the Virtual Benchmarking of Pneumatic Ventricular Assist Devices: Application of a Novel Fluid-Structure Interaction-Based Strategy to the Penn State 12 cc Device.
    Caimi A; Sturla F; Good B; Vidotto M; De Ponti R; Piatti F; Manning KB; Redaelli A
    J Biomech Eng; 2017 Aug; 139(8):0810081-08100810. PubMed ID: 28586917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic endurance test of the prosthetic valve used in the various types of the ventricular assist device.
    Nitta S; Yambe T; Katahira Y; Sonobe T; Saijoh Y; Naganuma S; Akiho H; Kakinuma Y; Tanaka M; Miura M
    Sci Rep Res Inst Tohoku Univ Med; 1991 Dec; 38(2-4):57-62. PubMed ID: 1843046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Left ventricular filling after long-term angiotensin converting enzyme inhibition in congestive heart failure.
    Baur LH; Schipperheyn JJ; Cats VM; van der Wall EE; Baan J; van Dijk AD; Bruschke AV
    Eur Heart J; 1992 Nov; 13 Suppl E():52-6. PubMed ID: 1478210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalized diastolic properties after left ventricular assist result from reverse remodeling of chamber geometry.
    Barbone A; Oz MC; Burkhoff D; Holmes JW
    Circulation; 2001 Sep; 104(12 Suppl 1):I229-32. PubMed ID: 11568061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.