These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7798282)

  • 21. Analysis of flow patterns in a ventricular assist device: a comparative study of particle image velocimetry and computational fluid dynamics.
    Sato K; Orihashi K; Kurosaki T; Tokumine A; Fukunaga S; Ninomiya S; Sueda T
    Artif Organs; 2009 Apr; 33(4):352-9. PubMed ID: 19335412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Noninvasive monitoring of pneumatically driven blood pumps based on measurements of air volume flow in the drive hose].
    Schmitz KP; Nabel HJ; Scharf W; Urbaszek W; Klinkmann H
    Z Gesamte Inn Med; 1987 Nov; 42(22):645-9. PubMed ID: 3442074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and simulation of blood flow in a sac-type left ventricular assist device.
    Najarian S; Firouzi F; Fatouraee N; Dargahi J
    Biomed Mater Eng; 2007; 17(4):229-33. PubMed ID: 17611298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and clinical assay of the BCM ventricular assist device.
    del Cañizo JF; Antoranz JC; Desco MM; Alvarez-Valdivielso JM; Fernandez-Caleya D; López M; Garcia-Barreno P; Duarte J
    Artif Organs; 1994 Jul; 18(7):484-9. PubMed ID: 7980090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical model of flow in a sac-type ventricular assist device.
    Avrahami I; Rosenfeld M; Raz S; Einav S
    Artif Organs; 2006 Jul; 30(7):529-38. PubMed ID: 16836734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.
    Fresiello L; Rademakers F; Claus P; Ferrari G; Di Molfetta A; Meyns B
    PLoS One; 2017; 12(7):e0181879. PubMed ID: 28738087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Load-independent analysis of a pulsatile right ventricular assist device.
    Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P
    J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Volume catheter parallel conductance varies between end-systole and end-diastole.
    Wei CL; Valvano JW; Feldman MD; Nahrendorf M; Peshock R; Pearce JA
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1480-9. PubMed ID: 17694869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automatic control algorithm for the optimal driving of the ventricular-assist device.
    Yoshizawa M; Takeda H; Watanabe T; Miura M; Yambe T; Katahira Y; Nitta S
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):243-52. PubMed ID: 1555854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of low-dose flosequinan on left ventricular systolic and diastolic chamber performance.
    Starling MR
    Am Heart J; 1994 Jul; 128(1):124-33. PubMed ID: 8017265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption.
    Drzewiecki GM; Pilla JJ; Welkowitz W
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of atmospheric pressure on ventricular assist device output.
    Goto T; Sato M; Yamazaki A; Fukuda W; Watanabe K; Daitoku K; Minakawa M; Fukui K; Suzuki Y; Fukuda I
    J Artif Organs; 2012 Mar; 15(1):104-8. PubMed ID: 21915797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.
    Tang C; Zhu L; Akingba G; Lu XY
    J Biomech; 2015 Jul; 48(10):1922-9. PubMed ID: 25911249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an algorithm to regulate pump output for a closed air-loop type pneumatic biventricular assist device.
    Nam KW; Lee JJ; Hwang CM; Choi J; Choi H; Choi SW; Sun K
    Artif Organs; 2009 Dec; 33(12):1063-8. PubMed ID: 19604228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ventricular motion during the ejection phase: a computational analysis.
    Redaelli A; Maisano F; Schreuder JJ; Montevecchi FM
    J Appl Physiol (1985); 2000 Jul; 89(1):314-22. PubMed ID: 10904067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-pressure sensor for continuous monitoring of a ventricular assist device.
    Nitta S; Katahira Y; Yambe T; Sonobe T; Hayashi H; Tanaka M; Sato N; Miura M; Mohri H; Esashi M
    Int J Artif Organs; 1990 Dec; 13(12):823-9. PubMed ID: 2289835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid-structure interaction modeling of aortic valve stenosis at different heart rates.
    Bahraseman HG; Languri EM; Yahyapourjalaly N; Espino DM
    Acta Bioeng Biomech; 2016; 18(3):11-20. PubMed ID: 27840438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device.
    Amacher R; Weber A; Brinks H; Axiak S; Ferreira A; Guzzella L; Carrel T; Antaki J; Vandenberghe S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):710-7. PubMed ID: 23317942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of a Pediatric Pulsatile Ventricular Assist Device: A Hybrid Cardiovascular Model Study.
    Ferrari G; Di Molfetta A; Zieliński K; Fresiello L; Górczyńska K; Pałko KJ; Darowski M; Amodeo A; Kozarski M
    Artif Organs; 2017 Dec; 41(12):1099-1108. PubMed ID: 28621816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.