These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7798284)

  • 21. Foot trajectory in human gait: a precise and multifactorial motor control task.
    Winter DA
    Phys Ther; 1992 Jan; 72(1):45-53; discussion 54-6. PubMed ID: 1728048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pelvis motion analysis for gait phase estimation toward leg-dependent body weight support at different walking speed.
    Watanabe T; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1590-3. PubMed ID: 22254626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Individual muscle responses to mediolateral foot placement perturbations during walking.
    Brough LG; Neptune RR
    J Biomech; 2022 Aug; 141():111201. PubMed ID: 35764014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Afferent control of walking: are there distinct deficits associated to loss of fibres of different diameter?
    Nardone A; Corna S; Turcato AM; Schieppati M
    Clin Neurophysiol; 2014 Feb; 125(2):327-35. PubMed ID: 23948160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High heeled shoes: their effect on center of mass position, posture, three-dimensional kinematics, rearfoot motion, and ground reaction forces.
    Snow RE; Williams KR
    Arch Phys Med Rehabil; 1994 May; 75(5):568-76. PubMed ID: 8185452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force adaptation in human walking with symmetrically applied downward forces on the pelvis.
    Vashista V; Agrawal N; Shaharudin S; Reisman DS; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):969-78. PubMed ID: 23529103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Body-foot geometries as revealed by perturbed obstacle position with different time constraints.
    Dugas LP; Bouyer LJ; McFadyen BJ
    Exp Brain Res; 2018 Mar; 236(3):711-720. PubMed ID: 29299643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcaneal Plantar Flexion During the Stance Phase of Gait.
    Stamm SE; Chiu LZ
    J Appl Biomech; 2016 Apr; 32(2):205-9. PubMed ID: 26398966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of whole body balance in the frontal plane during human walking.
    MacKinnon CD; Winter DA
    J Biomech; 1993 Jun; 26(6):633-44. PubMed ID: 8514809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliability of the OptoGait portable photoelectric cell system for the quantification of spatial-temporal parameters of gait in young adults.
    Gomez Bernal A; Becerro-de-Bengoa-Vallejo R; Losa-Iglesias ME
    Gait Posture; 2016 Oct; 50():196-200. PubMed ID: 27644096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of the lower leg during walking: a versatile model of the foot.
    Stefanovic F; Popovic DB
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):63-9. PubMed ID: 19211325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.
    Toebes MJ; Hoozemans MJ; Dekker J; van Dieën JH
    Gait Posture; 2014; 40(1):215-9. PubMed ID: 24768117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A neuromechanical strategy for mediolateral foot placement in walking humans.
    Rankin BL; Buffo SK; Dean JC
    J Neurophysiol; 2014 Jul; 112(2):374-83. PubMed ID: 24790168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.