These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7799638)

  • 1. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation.
    Pedersen EM; Sung HW; Yoganathan AP
    J Biomech Eng; 1994 Aug; 116(3):347-54. PubMed ID: 7799638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Feb; 116(1):107-11. PubMed ID: 8189705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation.
    Pedersen EM; Yoganathan AP; Lefebvre XP
    J Biomech; 1992 Aug; 25(8):935-44. PubMed ID: 1639838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional visualization of velocity profiles in the porcine abdominal aortic trifurcation.
    Pedersen EM; Hjortdal JO; Hjortdal VE; Nygaard H; Hasenkam M; Paulsen PK
    J Vasc Surg; 1992 Jan; 15(1):194-204. PubMed ID: 1530825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of velocity profiles and retrograde flow in the porcine abdominal aorta under different haemodynamic conditions.
    Pedersen EM; Kim WY; Staalsen NH; Hasenkam JM; Nygaard H; Paulsen PK
    Scand Cardiovasc J; 1999; 33(4):206-14. PubMed ID: 10517207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis.
    Moore JE; Ku DN; Zarins CK; Glagov S
    J Biomech Eng; 1992 Aug; 114(3):391-7. PubMed ID: 1295493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validated computation of physiologic flow in a realistic coronary artery branch.
    Perktold K; Hofer M; Rappitsch G; Loew M; Kuban BD; Friedman MH
    J Biomech; 1998 Mar; 31(3):217-28. PubMed ID: 9645536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms.
    Lee CS; Tarbell JM
    J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D model of hemodynamics in the abdominal aorta.
    Zbicinski I; Veshkina N; StefaƄczyk L
    Biomed Mater Eng; 2015; 26 Suppl 1():S257-64. PubMed ID: 26406010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling.
    Tang BT; Cheng CP; Draney MT; Wilson NM; Tsao PS; Herfkens RJ; Taylor CA
    Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H668-76. PubMed ID: 16603687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D; Chen JY
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults.
    Pedersen EM; Agerbaek M; Kristensen IB; Yoganathan AP
    Eur J Vasc Endovasc Surg; 1997 May; 13(5):443-51. PubMed ID: 9166266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An LDA and flow visualization study of pulsatile flow in an aortic bifurcation model.
    Naiki T; Hayashi K; Takemura S
    Biorheology; 1995; 32(1):43-59. PubMed ID: 7548860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise.
    Cheng CP; Herfkens RJ; Taylor CA
    J Vasc Surg; 2003 Jan; 37(1):118-23. PubMed ID: 12514587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.