These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 7799944)
1. Two functionally distinct RNA-binding motifs in the regulatory domain of the protein kinase DAI. Green SR; Manche L; Mathews MB Mol Cell Biol; 1995 Jan; 15(1):358-64. PubMed ID: 7799944 [TBL] [Abstract][Full Text] [Related]
2. Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2 alpha kinase DAI in Saccharomyces cerevisiae. Romano PR; Green SR; Barber GN; Mathews MB; Hinnebusch AG Mol Cell Biol; 1995 Jan; 15(1):365-78. PubMed ID: 7799945 [TBL] [Abstract][Full Text] [Related]
3. Two RNA-binding motifs in the double-stranded RNA-activated protein kinase, DAI. Green SR; Mathews MB Genes Dev; 1992 Dec; 6(12B):2478-90. PubMed ID: 1364113 [TBL] [Abstract][Full Text] [Related]
4. Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA. Clarke PA; Mathews MB RNA; 1995 Mar; 1(1):7-20. PubMed ID: 7489491 [TBL] [Abstract][Full Text] [Related]
5. Structural features of adenovirus 2 virus-associated RNA required for binding to the protein kinase DAI. Clarke PA; Pe'ery T; Ma Y; Mathews MB Nucleic Acids Res; 1994 Oct; 22(21):4364-74. PubMed ID: 7971266 [TBL] [Abstract][Full Text] [Related]
6. Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Chang HW; Jacobs BL Virology; 1993 Jun; 194(2):537-47. PubMed ID: 8099244 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of interferon action: functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase. Liu Y; Samuel CE J Virol; 1996 Mar; 70(3):1961-8. PubMed ID: 8627722 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of the RNA-binding domain and motif of the double-stranded RNA-dependent protein kinase DAI (PKR). Schmedt C; Green SR; Manche L; Taylor DR; Ma Y; Mathews MB J Mol Biol; 1995 May; 249(1):29-44. PubMed ID: 7776374 [TBL] [Abstract][Full Text] [Related]
9. Surprising specificity of PKR binding to delta agent genomic RNA. Circle DA; Neel OD; Robertson HD; Clarke PA; Mathews MB RNA; 1997 Apr; 3(4):438-48. PubMed ID: 9085850 [TBL] [Abstract][Full Text] [Related]
10. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. Bycroft M; Grünert S; Murzin AG; Proctor M; St Johnston D EMBO J; 1995 Jul; 14(14):3563-71. PubMed ID: 7628456 [TBL] [Abstract][Full Text] [Related]
11. Specific mutations near the amino terminus of double-stranded RNA-dependent protein kinase (PKR) differentially affect its double-stranded RNA binding and dimerization properties. Patel RC; Stanton P; Sen GC J Biol Chem; 1996 Oct; 271(41):25657-63. PubMed ID: 8810342 [TBL] [Abstract][Full Text] [Related]
12. Secondary and tertiary structure in the central domain of adenovirus type 2 VA RNA I. Ma Y; Mathews MB RNA; 1996 Sep; 2(9):937-51. PubMed ID: 8809020 [TBL] [Abstract][Full Text] [Related]
13. Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). Wu S; Kaufman RJ J Biol Chem; 1996 Jan; 271(3):1756-63. PubMed ID: 8576179 [TBL] [Abstract][Full Text] [Related]
14. Products of the porcine group C rotavirus NSP3 gene bind specifically to double-stranded RNA and inhibit activation of the interferon-induced protein kinase PKR. Langland JO; Pettiford S; Jiang B; Jacobs BL J Virol; 1994 Jun; 68(6):3821-9. PubMed ID: 7514679 [TBL] [Abstract][Full Text] [Related]
15. A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR. Nanduri S; Rahman F; Williams BR; Qin J EMBO J; 2000 Oct; 19(20):5567-74. PubMed ID: 11032824 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa. Möller HM; Martinez-Yamout MA; Dyson HJ; Wright PE J Mol Biol; 2005 Aug; 351(4):718-30. PubMed ID: 16051273 [TBL] [Abstract][Full Text] [Related]
17. A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs. Cerritelli SM; Fedoroff OY; Reid BR; Crouch RJ Nucleic Acids Res; 1998 Apr; 26(7):1834-40. PubMed ID: 9512560 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats. Jeong EJ; Hwang GS; Kim KH; Kim MJ; Kim S; Kim KS Biochemistry; 2000 Dec; 39(51):15775-82. PubMed ID: 11123902 [TBL] [Abstract][Full Text] [Related]
19. The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Wimberly BT; White SW; Ramakrishnan V Structure; 1997 Sep; 5(9):1187-98. PubMed ID: 9331418 [TBL] [Abstract][Full Text] [Related]
20. Uncoupling of RNA binding and PKR kinase activation by viral inhibitor RNAs. McKenna SA; Kim I; Liu CW; Puglisi JD J Mol Biol; 2006 May; 358(5):1270-85. PubMed ID: 16580685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]