These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 7800043)

  • 1. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins.
    Seufert W; Futcher B; Jentsch S
    Nature; 1995 Jan; 373(6509):78-81. PubMed ID: 7800043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G2 cyclins are required for the degradation of G1 cyclins in yeast.
    Blondel M; Mann C
    Nature; 1996 Nov; 384(6606):279-82. PubMed ID: 8918881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.
    Bailly E; Reed SI
    Mol Cell Biol; 1999 Oct; 19(10):6872-90. PubMed ID: 10490625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis.
    Schwab M; Lutum AS; Seufert W
    Cell; 1997 Aug; 90(4):683-93. PubMed ID: 9288748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6.
    Siegmund RF; Nasmyth KA
    Mol Cell Biol; 1996 Jun; 16(6):2647-55. PubMed ID: 8649372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two ubiquitin-conjugating enzymes, UbcP1/Ubc4 and UbcP4/Ubc11, have distinct functions for ubiquitination of mitotic cyclin.
    Seino H; Kishi T; Nishitani H; Yamao F
    Mol Cell Biol; 2003 May; 23(10):3497-505. PubMed ID: 12724408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae.
    Schwob E; Nasmyth K
    Genes Dev; 1993 Jul; 7(7A):1160-75. PubMed ID: 8319908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clb5-associated kinase activity is required early in the spindle pathway for correct preanaphase nuclear positioning in Saccharomyces cerevisiae.
    Segal M; Clarke DJ; Reed SI
    J Cell Biol; 1998 Oct; 143(1):135-45. PubMed ID: 9763426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast.
    Amon A
    EMBO J; 1997 May; 16(10):2693-702. PubMed ID: 9184216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle.
    Amon A; Irniger S; Nasmyth K
    Cell; 1994 Jul; 77(7):1037-50. PubMed ID: 8020094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
    Loog M; Morgan DO
    Nature; 2005 Mar; 434(7029):104-8. PubMed ID: 15744308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae.
    Schwob E; Böhm T; Mendenhall MD; Nasmyth K
    Cell; 1994 Oct; 79(2):233-44. PubMed ID: 7954792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast.
    Dieckhoff P; Bolte M; Sancak Y; Braus GH; Irniger S
    Mol Microbiol; 2004 Mar; 51(5):1375-87. PubMed ID: 14982631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation.
    Yu H; King RW; Peters JM; Kirschner MW
    Curr Biol; 1996 Apr; 6(4):455-66. PubMed ID: 8723350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ubiquitin-conjugating enzyme in fission yeast that is essential for the onset of anaphase in mitosis.
    Osaka F; Seino H; Seno T; Yamao F
    Mol Cell Biol; 1997 Jun; 17(6):3388-97. PubMed ID: 9154838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early expressed Clb proteins allow accumulation of mitotic cyclin by inactivating proteolytic machinery during S phase.
    Yeong FM; Lim HH; Wang Y; Surana U
    Mol Cell Biol; 2001 Aug; 21(15):5071-81. PubMed ID: 11438663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage inhibits proteolysis of the B-type cyclin Clb5 in S. cerevisiae.
    Germain D; Hendley J; Futcher B
    J Cell Sci; 1997 Aug; 110 ( Pt 15)():1813-20. PubMed ID: 9264468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6.
    Jackson LP; Reed SI; Haase SB
    Mol Cell Biol; 2006 Mar; 26(6):2456-66. PubMed ID: 16508019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus cyclin A1 can associate with Cdc28 in budding yeast, causing cell-cycle arrest with an abnormal distribution of nuclear DNA.
    Funakoshi M; Sikder H; Ebihara H; Irie K; Sugimoto K; Matsumoto K; Hunt T; Nishimoto T; Kobayashi H
    Genes Cells; 1997 May; 2(5):329-43. PubMed ID: 9280344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae.
    Basco RD; Segal MD; Reed SI
    Mol Cell Biol; 1995 Sep; 15(9):5030-42. PubMed ID: 7651421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.