BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 7800496)

  • 1. Histidylation by yeast HisRS of tRNA or tRNA-like structure relies on residues -1 and 73 but is dependent on the RNA context.
    Rudinger J; Florentz C; Giegé R
    Nucleic Acids Res; 1994 Nov; 22(23):5031-7. PubMed ID: 7800496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair.
    Yuan J; Gogakos T; Babina AM; Söll D; Randau L
    Nucleic Acids Res; 2011 Mar; 39(6):2286-93. PubMed ID: 21087993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategy for RNA recognition by yeast histidyl-tRNA synthetase.
    Rudinger J; Felden B; Florentz C; Giegé R
    Bioorg Med Chem; 1997 Jun; 5(6):1001-9. PubMed ID: 9222493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity elements of Saccharomyces cerevisiae tRNA(His).
    Nameki N; Asahara H; Shimizu M; Okada N; Himeno H
    Nucleic Acids Res; 1995 Feb; 23(3):389-94. PubMed ID: 7885835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient mischarging of a viral tRNA-like structure and aminoacylation of a minihelix containing a pseudoknot: histidinylation of turnip yellow mosaic virus RNA.
    Rudinger J; Florentz C; Dreher T; Giegé R
    Nucleic Acids Res; 1992 Apr; 20(8):1865-70. PubMed ID: 1579487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase.
    Yan W; Augustine J; Francklyn C
    Biochemistry; 1996 May; 35(21):6559-68. PubMed ID: 8639604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase.
    Tian Q; Wang C; Liu Y; Xie W
    Nucleic Acids Res; 2015 Mar; 43(5):2980-90. PubMed ID: 25722375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element.
    Hawko SA; Francklyn CS
    Biochemistry; 2001 Feb; 40(7):1930-6. PubMed ID: 11329259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific tyrosylation of the bulky tRNA-like structure of brome mosaic virus RNA relies solely on identity nucleotides present in its amino acid-accepting domain.
    Fechter P; Giegé R; Rudinger-Thirion J
    J Mol Biol; 2001 Jun; 309(2):387-99. PubMed ID: 11371160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase.
    Connolly SA; Rosen AE; Musier-Forsyth K; Francklyn CS
    Biochemistry; 2004 Feb; 43(4):962-9. PubMed ID: 14744140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs.
    Rosen AE; Brooks BS; Guth E; Francklyn CS; Musier-Forsyth K
    RNA; 2006 Jul; 12(7):1315-22. PubMed ID: 16741232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosine 73 is a discriminator nucleotide in vivo for histidyl-tRNA in Escherichia coli.
    Yan W; Francklyn C
    J Biol Chem; 1994 Apr; 269(13):10022-7. PubMed ID: 8144499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase.
    Felden B; Giegé R
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10431-6. PubMed ID: 9724720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A histidine accepting tRNA-like fold at the 3'-end of satellite tobacco mosaic virus RNA.
    Felden B; Florentz C; McPherson A; Giegé R
    Nucleic Acids Res; 1994 Aug; 22(15):2882-6. PubMed ID: 8065897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5' upstream pseudoknots in the 3' terminus of tobacco mosaic virus RNA.
    Felden B; Florentz C; Giegé R; Westhof E
    RNA; 1996 Mar; 2(3):201-12. PubMed ID: 8608444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally occurring dual recognition of tRNA
    Lee YH; Lo YT; Chang CP; Yeh CS; Chang TH; Chen YW; Tseng YK; Wang CC
    RNA Biol; 2019 Sep; 16(9):1275-1285. PubMed ID: 31179821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular recognition of histidine tRNA by histidyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.
    Nagatoyo Y; Iwaki J; Suzuki S; Kuno A; Hasegawa T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):307-8. PubMed ID: 17150756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidyl-tRNA synthetase.
    Freist W; Verhey JF; Rühlmann A; Gauss DH; Arnez JG
    Biol Chem; 1999 Jun; 380(6):623-46. PubMed ID: 10430027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of viral RNA-derived tRNA-like structures with improved valylation activities.
    Wientges J; Pütz J; Giegé R; Florentz C; Schwienhorst A
    Biochemistry; 2000 May; 39(20):6207-18. PubMed ID: 10821696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase.
    Lee YH; Chang CP; Cheng YJ; Kuo YY; Lin YS; Wang CC
    Cell Mol Life Sci; 2017 Jul; 74(14):2663-2677. PubMed ID: 28321488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.