BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7800649)

  • 41. Mitochondrial and cytosolic rhodanese from liver of DAB treated mice. II. Some properties and spectral studies.
    Vazquez E; Polo C; Batlle AM
    Cancer Biochem Biophys; 1995 Jun; 15(1):55-63. PubMed ID: 8536221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Domain structural flexibility in rhodanese examined by quenching of a phosphorescent probe.
    Koloczek H; Vanderkooi JM
    Biochim Biophys Acta; 1987 Nov; 916(2):236-44. PubMed ID: 2445385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhodanese activity during the embryonic development of mouse liver and kidney.
    Unsworth BR
    Enzyme; 1975; 20(3):138-50. PubMed ID: 1126333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antagonism of cyanide intoxication with murine carrier erythrocytes containing bovine rhodanese and sodium thiosulfate.
    Cannon EP; Leung P; Hawkins A; Petrikovics I; DeLoach J; Way JL
    J Toxicol Environ Health; 1994 Mar; 41(3):267-74. PubMed ID: 8126749
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation and partial purification of mitochondrial and cytosolic rhodanese from liver of normal and p-dimethylaminoazobenzene treated mice.
    Vazquez E; Polo C; Stedile G; Schebor C; Karahanian E; Batlle A
    Int J Biochem Cell Biol; 1995 May; 27(5):523-9. PubMed ID: 7641082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A chaperone-mimetic effect of serum albumin on rhodanese.
    Jarabak R; Westley J; Dungan JM; Horowitz P
    J Biochem Toxicol; 1993 Mar; 8(1):41-8. PubMed ID: 8492302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antagonism of cyanide poisoning by chlorpromazine and sodium thiosulfate.
    Pettersen JC; Cohen SD
    Toxicol Appl Pharmacol; 1985 Nov; 81(2):265-73. PubMed ID: 2997948
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Age-related changes in the activity of cerebral rhodanese in mice during the first four months of life.
    Sani M; Sebai H; Gadacha W; Boughattas NA; Reinberg A; Ben-Attia M
    Brain Dev; 2008 Apr; 30(4):279-86. PubMed ID: 17997247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese.
    Cipollone R; Ascenzi P; Tomao P; Imperi F; Visca P
    J Mol Microbiol Biotechnol; 2008; 15(2-3):199-211. PubMed ID: 18685272
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cyanylation of rhodanese by 2-nitro-5-thiocyanobenzoic acid.
    Pecci L; Cannella C; Pensa B; Costa M; Cavallini D
    Biochim Biophys Acta; 1980 Jun; 623(2):348-53. PubMed ID: 6930978
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micelle-assisted protein folding. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Mar; 267(9):5811-6. PubMed ID: 1556097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New crystalline derivatives of bovine liver rhodanese.
    Berni R; Cannella C; Monaco HL; Rossi GL
    Biochem Int; 1986 May; 12(5):733-40. PubMed ID: 3460592
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhodanese-thioredoxin system and allyl sulfur compounds.
    Sabelli R; Iorio E; De Martino A; Podo F; Ricci A; Viticchiè G; Rotilio G; Paci M; Melino S
    FEBS J; 2008 Aug; 275(15):3884-99. PubMed ID: 18616471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of rhodanese with mitochondrial NADH dehydrogenase.
    Pagani S; Galante YM
    Biochim Biophys Acta; 1983 Jan; 742(2):278-84. PubMed ID: 6402020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cardiolipin liposomes sequester a reactivatable partially folded rhodanese intermediate.
    Zardeneta G; Horowitz PM
    Eur J Biochem; 1992 Dec; 210(3):831-7. PubMed ID: 1483467
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The cyanide-metabolizing enzyme rhodanese in human nasal respiratory mucosa.
    Lewis JL; Rhoades CE; Gervasi PG; Griffith WC; Dahl AR
    Toxicol Appl Pharmacol; 1991 Mar; 108(1):114-20. PubMed ID: 2006499
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tissue-specific bioenergetic effects and increased enzymatic activities following acute sublethal peroral exposure to cyanide in the mallard duck.
    Ma J; Pritsos CA
    Toxicol Appl Pharmacol; 1997 Feb; 142(2):297-302. PubMed ID: 9070352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Circadian and ultradian (12 h) rhythms of hepatic thiosulfate sulfurtransferase (rhodanese) activity in mice during the first two months of life.
    Sani M; Gadacha W; Boughattas NA; Reinberg A; Ben Attia M
    Chronobiol Int; 2006; 23(3):551-63. PubMed ID: 16753941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state.
    Lijk LJ; Kalk KH; Brandenburg NP; Hol WG
    Biochemistry; 1983 Jun; 22(12):2952-7. PubMed ID: 6575830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.