BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7801601)

  • 1. Nanofiltration, a new specific virus elimination method applied to high-purity factor IX and factor XI concentrates.
    Burnouf-Radosevich M; Appourchaux P; Huart JJ; Burnouf T
    Vox Sang; 1994; 67(2):132-8. PubMed ID: 7801601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration.
    Troccoli NM; McIver J; Losikoff A; Poiley J
    Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation and clearance of viruses during the manufacture of high purity factor IX.
    Johnston A; Macgregor A; Borovec S; Hattarki M; Stuckly K; Anderson D; Goss NH; Oates A; Uren E
    Biologicals; 2000 Sep; 28(3):129-36. PubMed ID: 10964439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofiltration of plasma-derived biopharmaceutical products.
    Burnouf T; Radosevich M
    Haemophilia; 2003 Jan; 9(1):24-37. PubMed ID: 12558776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of virus safety of an antihemophilc factor IX by virus filtration process.
    Kim IS; Choi YW; Kang Y; Sung HM; Sohn KW; Kim YS
    J Microbiol Biotechnol; 2008 Jul; 18(7):1317-25. PubMed ID: 18667862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virus removal capacity at varying ionic strength during nanofiltration of AlphaNine® SD.
    Jorba N; Shitanishi KT; Winkler CJ; Herring SW
    Biologicals; 2014 Sep; 42(5):290-3. PubMed ID: 24999080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robustness of nanofiltration for increasing the viral safety margin of biological products.
    Caballero S; Diez JM; Belda FJ; Otegui M; Herring S; Roth NJ; Lee D; Gajardo R; Jorquera JI
    Biologicals; 2014 Mar; 42(2):79-85. PubMed ID: 24485384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus removal from factor IX by filtration: validation of the integrity test and effect of manufacturing process conditions.
    Roberts PL; Feldman P; Crombie D; Walker C; Lowery K
    Biologicals; 2010 Mar; 38(2):303-10. PubMed ID: 20089418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virus removal studies using nanofiltration membranes.
    O'Grady J; Losikoff A; Poiley J; Fickett D; Oliver C
    Dev Biol Stand; 1996; 88():319-26. PubMed ID: 9119156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of an additional viral-clearance step into a human immunoglobulin manufacturing process.
    Van Holten RW; Ciavarella D; Oulundsen G; Harmon F; Riester S
    Vox Sang; 2002 Oct; 83(3):227-33. PubMed ID: 12366764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives.
    Kreil TR; Wieser A; Berting A; Spruth M; Medek C; Pölsler G; Gaida T; Hämmerle T; Teschner W; Schwarz HP; Barrett PN
    Transfusion; 2006 Jul; 46(7):1143-51. PubMed ID: 16836561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solvent/detergent-treated and 15-nm filtered factor VIII: a new safety standard for plasma-derived coagulation factor concentrates.
    Chtourou S; Porte P; Nogré M; Bihoreau N; Cheesman E; Samor B; Sauger A; Raut S; Mazurier C
    Vox Sang; 2007 May; 92(4):327-37. PubMed ID: 17456157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved virus safety and purity of a chromatographically produced factor IX concentrate by nanofiltration.
    Hoffer L; Schwinn H; Biesert L; Josic D
    J Chromatogr B Biomed Appl; 1995 Jul; 669(2):187-96. PubMed ID: 7581895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: virus and prion reduction capacity.
    Poelsler G; Berting A; Kindermann J; Spruth M; Hämmerle T; Teschner W; Schwarz HP; Kreil TR
    Vox Sang; 2008 Apr; 94(3):184-192. PubMed ID: 18167162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cross-over pharmacokinetic study of a double viral inactivated factor IX concentrate (15 nm filtration and SD) compared to a SD factor IX concentrate.
    Goudemand J; Peynet J; Chambost H; Négrier C; Briquel ME; Claeyssens S; Derlon-Borel A; Guérois C; Caron C; Scherrmann JM; Debray M; Bridey F
    Thromb Haemost; 1998 Dec; 80(6):919-24. PubMed ID: 9869161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and inactivation of enveloped and non-enveloped viruses during the purification of a high-purity factor IX by metal chelate affinity chromatography.
    Roberts PL; Walker CP; Feldman PA
    Vox Sang; 1994; 67 Suppl 1():69-71. PubMed ID: 8091741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogen Safety of a New Intravenous Immune Globulin 10% Liquid.
    Radomski KU; Lattner G; Schmidt T; Römisch J
    BioDrugs; 2017 Apr; 31(2):125-134. PubMed ID: 28236170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of terminal (dry) heat treatment on non-enveloped viruses in coagulation factor concentrates.
    Hart HF; Hart WG; Crossley J; Perrie AM; Wood DJ; John A; McOmish F
    Vox Sang; 1994; 67(4):345-50. PubMed ID: 7701804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of small non-enveloped viruses by nanofiltration.
    Yokoyama T; Murai K; Murozuka T; Wakisaka A; Tanifuji M; Fujii N; Tomono T
    Vox Sang; 2004 May; 86(4):225-9. PubMed ID: 15144526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of neutralized model parvoviruses and enteroviruses in human IgG solutions by nanofiltration.
    Omar A; Kempf C
    Transfusion; 2002 Aug; 42(8):1005-10. PubMed ID: 12385411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.