BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7802261)

  • 1. Chiral separation mechanisms in protein-based HPLC columns. 1. Thermodynamic studies of (R)- and (S)-warfarin binding to immobilized human serum albumin.
    Loun B; Hage DS
    Anal Chem; 1994 Nov; 66(21):3814-22. PubMed ID: 7802261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral separation mechanisms in protein-based HPLC columns. 2. Kinetic studies of (R)- and (S)-warfarin binding to immobilized human serum albumin.
    Loun B; Hage DS
    Anal Chem; 1996 Apr; 68(7):1218-25. PubMed ID: 8651495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-binding high-performance frontal analysis of (R)- and (S)-warfarin on HSA with and without phenylbutazone.
    He J; Shibukawa A; Tokunaga S; Nakagawa T
    J Pharm Sci; 1997 Jan; 86(1):120-5. PubMed ID: 9002471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site I on human albumin: differences in the binding of (R)- and (S)-warfarin.
    Bertucci C; Canepa A; Ascoli GA; Guimaraes LF; Felix G
    Chirality; 1999; 11(9):675-9. PubMed ID: 10506426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ethanol on the binding of warfarin enantiomers to human serum albumin.
    Tatsumi A; Kadobayashi M; Iwakawa S
    Biol Pharm Bull; 2007 Apr; 30(4):826-9. PubMed ID: 17409531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of tryptophan-modified human serum albumin columns for site-specific studies of drug-protein interactions by high-performance affinity chromatography.
    Chattopadhyay A; Tian T; Kortum L; Hage DS
    J Chromatogr B Biomed Sci Appl; 1998 Sep; 715(1):183-90. PubMed ID: 9792509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of binding capacity versus binding strength in the separation of chiral compounds on protein-based high-performance liquid chromatography columns. Interactions of D- and L-tryptophan with human serum albumin.
    Yang J; Hage DS
    J Chromatogr A; 1996 Feb; 725(2):273-85. PubMed ID: 8900576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of thyroxine-albumin binding using high-performance affinity chromatography. II. Comparison of the binding of thyroxine, triiodothyronines and related compounds at the warfarin and indole sites of human serum albumin.
    Loun B; Hage DS
    J Chromatogr B Biomed Appl; 1995 Mar; 665(2):303-14. PubMed ID: 7795810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of thyroxine-albumin binding using high-performance affinity chromatography. I. Interactions at the warfarin and indole sites of albumin.
    Loun B; Hage DS
    J Chromatogr; 1992 Sep; 579(2):225-35. PubMed ID: 1429970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the binding and chiral separation of D- and L-tryptophan on a high-performance immobilized human serum albumin column.
    Yang J; Hage DS
    J Chromatogr; 1993 Aug; 645(2):241-50. PubMed ID: 8408417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warfarin metabolites: stereochemical aspects of protein binding and displacement by phenylbutazone.
    Chan E; McLachlan AJ; Rowland M
    Chirality; 1993; 5(8):610-5. PubMed ID: 8305289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites.
    Domenici E; Bertucci C; Salvadori P; Wainer IW
    J Pharm Sci; 1991 Feb; 80(2):164-6. PubMed ID: 2051322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of temperature on the enantiomeric resolutions on albumin and beta-cyclodextrin chiral stationary phases].
    Zhang Q; Zou HF; Chen XM; Wang HL; Ni JY; Zhang ZZ; Yao PJ
    Se Pu; 2001 Jan; 19(1):9-12. PubMed ID: 12541837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic analysis of carbamazepine binding to human serum albumin.
    Kim HS; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 816(1-2):57-66. PubMed ID: 15664334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective kinetics of warfarin binding to human serum albumin: effect of an allosteric interaction.
    Fitos I; Visy J; Kardos J
    Chirality; 2002 May; 14(5):442-8. PubMed ID: 11984760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Human Serum Albumin Binding of Apremilast: Liquid Chromatographic, Fluorescence and Molecular Docking Study.
    Dombi G; Horváth P; Fiser B; Mirzahosseini A; Dobó M; Szabó ZI; Tóth G
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance frontal analysis of the binding of thyroxine enantiomers to human serum albumin.
    Kimura T; Nakanishi K; Nakagawa T; Shibukawa A; Matsuzaki K
    Pharm Res; 2005 Apr; 22(4):667-75. PubMed ID: 15846475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilized serum albumin: rapid HPLC probe of stereoselective protein-binding interactions.
    Domenici E; Bertucci C; Salvadori P; Motellier S; Wainer IW
    Chirality; 1990; 2(4):263-8. PubMed ID: 2083149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of drug binding interactions on human, rat and rabbit serum albumin using high-performance displacement chromatography.
    Aubry AF; Markoglou N; McGann A
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 Nov; 112(3):257-66. PubMed ID: 8838677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan.
    Joseph KS; Hage DS
    J Pharm Biomed Anal; 2010 Nov; 53(3):811-8. PubMed ID: 20537832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.