These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 780236)

  • 1. Loss of inducible D-galactose transport by baker's yeast after osmotic treatment.
    Horák J; Ríhová L; Kotyk A
    Folia Microbiol (Praha); 1976; 21(2):125-30. PubMed ID: 780236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.
    Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A
    Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of the sugar carrier in baker's yeast. IV. An asymmetric component of monosaccharide transport.
    Kotyk A; Michaljanicová D
    Folia Microbiol (Praha); 1968; 13(3):212-20. PubMed ID: 5672582
    [No Abstract]   [Full Text] [Related]  

  • 4. Apparent half-lives of sugar transport proteins in Saccharomyces cerevisiae.
    Alonso A; Kotyk A
    Folia Microbiol (Praha); 1978; 23(2):118-25. PubMed ID: 348586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system.
    Cirillo VP
    J Bacteriol; 1968 May; 95(5):1727-31. PubMed ID: 5650080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the sugar carrier in Baker's yeast. 3. Induction of the galactose carrier.
    Kotyk A; Haskovec C
    Folia Microbiol (Praha); 1968; 13(1):12-9. PubMed ID: 5642682
    [No Abstract]   [Full Text] [Related]  

  • 7. The use of dietary-restricted rat intestine for active transport studies.
    Neale RJ; Wiseman G
    J Physiol; 1969 Nov; 205(1):159-78. PubMed ID: 5347715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli.
    Henderson PJ; Macpherson AJ
    Methods Enzymol; 1986; 125():387-429. PubMed ID: 3520228
    [No Abstract]   [Full Text] [Related]  

  • 9. Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells.
    Kou SC; Christensen MS; Cirillo VP
    J Bacteriol; 1970 Sep; 103(3):671-8. PubMed ID: 5474882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of sugars in phosphate transport in baker's yeast.
    Knotková A; Kotyk A
    Folia Microbiol (Praha); 1972; 17(4):251-60. PubMed ID: 4560645
    [No Abstract]   [Full Text] [Related]  

  • 11. Different affinities of the -and -anomers of D-glucose, D-mannose and D-xylose for the glucose uptake system of baker's yeast.
    Ehwald R; Sammler P; Göring H
    Folia Microbiol (Praha); 1973; 18(2):102-17. PubMed ID: 4575637
    [No Abstract]   [Full Text] [Related]  

  • 12. l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans.
    Németh Z; Kulcsár L; Flipphi M; Orosz A; Aguilar-Pontes MV; de Vries RP; Karaffa L; Fekete E
    Fungal Genet Biol; 2019 Feb; 123():53-59. PubMed ID: 30496805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12.
    Rottmann T; Klebl F; Schneider S; Kischka D; Rüscher D; Sauer N; Stadler R
    Plant Physiol; 2018 Mar; 176(3):2330-2350. PubMed ID: 29311272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae.
    Kotyk A
    Biochim Biophys Acta; 1967 Feb; 135(1):112-9. PubMed ID: 6031495
    [No Abstract]   [Full Text] [Related]  

  • 16. Computer modelling approach to study the modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein.
    Mukhopadhyay C; Rao VS
    Int J Biol Macromol; 1989 Aug; 11(4):194-200. PubMed ID: 2489081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
    Joanny P; Corriol J; Hillman H
    Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The absorption of sugars from the human buccal cavity.
    Manning AS; Evered DF
    Clin Sci Mol Med; 1976 Aug; 51(2):127-32. PubMed ID: 954358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae.
    Aro-Kärkkäinen N; Toivari M; Maaheimo H; Ylilauri M; Pentikäinen OT; Andberg M; Oja M; Penttilä M; Wiebe MG; Ruohonen L; Koivula A
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9653-65. PubMed ID: 25236800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose.
    Bolen PL; Detroy RW
    Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.