These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 7802635)

  • 1. ACPR, a STE12 homologue from Candida albicans, is a strong inducer of pseudohyphae in Saccharomyces cerevisiae haploids and diploids.
    Singh P; Ganesan K; Malathi K; Ghosh D; Datta A
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1079-85. PubMed ID: 7802635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants.
    Malathi K; Ganesan K; Datta A
    J Biol Chem; 1994 Sep; 269(37):22945-51. PubMed ID: 8083193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.
    Liu H; Köhler J; Fink GR
    Science; 1994 Dec; 266(5191):1723-6. PubMed ID: 7992058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae.
    Lo WS; Dranginis AM
    Mol Biol Cell; 1998 Jan; 9(1):161-71. PubMed ID: 9436998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonfilamentous C. albicans mutants are avirulent.
    Lo HJ; Köhler JR; DiDomenico B; Loebenberg D; Cacciapuoti A; Fink GR
    Cell; 1997 Sep; 90(5):939-49. PubMed ID: 9298905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergence of transcription factor binding sites across related yeast species.
    Borneman AR; Gianoulis TA; Zhang ZD; Yu H; Rozowsky J; Seringhaus MR; Wang LY; Gerstein M; Snyder M
    Science; 2007 Aug; 317(5839):815-9. PubMed ID: 17690298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of ScSwi1 and CaSwi1 in invasive and pseudohyphal growth of Saccharomyces cerevisiae.
    Mao X; Nie X; Cao F; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2009 Jul; 41(7):594-602. PubMed ID: 19578723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A G-protein alpha subunit from asexual Candida albicans functions in the mating signal transduction pathway of Saccharomyces cerevisiae and is regulated by the a1-alpha 2 repressor.
    Sadhu C; Hoekstra D; McEachern MJ; Reed SI; Hicks JB
    Mol Cell Biol; 1992 May; 12(5):1977-85. PubMed ID: 1569935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Candida albicans genes that induce Saccharomyces cerevisiae cell adhesion and morphogenesis.
    Li F; Palecek SP
    Biotechnol Prog; 2005; 21(6):1601-9. PubMed ID: 16321041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the DNA-binding domain of the Saccharomyces cerevisiae STE12 protein.
    Yuan YL; Fields S
    Mol Cell Biol; 1991 Dec; 11(12):5910-8. PubMed ID: 1944269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata.
    Purohit D; Gajjar D
    Int Microbiol; 2022 Nov; 25(4):789-802. PubMed ID: 35829973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth.
    Chapa-Y-Lazo B; Lee S; Regan H; Sudbery P
    Fungal Biol; 2011 Jun; 115(6):547-56. PubMed ID: 21640318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae.
    Crampin H; Finley K; Gerami-Nejad M; Court H; Gale C; Berman J; Sudbery P
    J Cell Sci; 2005 Jul; 118(Pt 13):2935-47. PubMed ID: 15976451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Candida albicans ASH1 in Saccharomyces cerevisiae.
    Münchow S; Ferring D; Kahlina K; Jansen RP
    Curr Genet; 2002 May; 41(2):73-81. PubMed ID: 12073088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans.
    Magee BB; Legrand M; Alarco AM; Raymond M; Magee PT
    Mol Microbiol; 2002 Dec; 46(5):1345-51. PubMed ID: 12453220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of pseudohyphae formation in Saccharomyces cerevisiae.
    Gancedo JM
    FEMS Microbiol Rev; 2001 Jan; 25(1):107-23. PubMed ID: 11152942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional expression of the Candida albicans alpha-factor receptor in Saccharomyces cerevisiae.
    Janiak AM; Sargsyan H; Russo J; Naider F; Hauser M; Becker JM
    Fungal Genet Biol; 2005 Apr; 42(4):328-38. PubMed ID: 15749052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of CaRAP1, encoding the Repressor/activator protein 1 of Candida albicans.
    Biswas K; Rieger KJ; Morschhäuser J
    Gene; 2003 Mar; 307():151-8. PubMed ID: 12706897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elements of the yeast pheromone response pathway required for filamentous growth of diploids.
    Liu H; Styles CA; Fink GR
    Science; 1993 Dec; 262(5140):1741-4. PubMed ID: 8259520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.