These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 7802635)
21. [Cloning and functional study of CaPPe1 in Candida albicans by using Saccharomyses cerevisiae model system]. Cao F; Chen JY Shi Yan Sheng Wu Xue Bao; 2005 Apr; 38(2):119-25. PubMed ID: 16011244 [TBL] [Abstract][Full Text] [Related]
22. A ste12 allele having a differential effect on a versus alpha cells. La Roche SD; Shafer BK; Strathern JN Mol Gen Genet; 1995 Jan; 246(1):80-90. PubMed ID: 7823915 [TBL] [Abstract][Full Text] [Related]
23. Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs. Martchenko M; Levitin A; Whiteway M Eukaryot Cell; 2007 Feb; 6(2):291-301. PubMed ID: 17158732 [TBL] [Abstract][Full Text] [Related]
24. Flip/flop mating-type switching in the methylotrophic yeast Ogataea polymorpha is regulated by an Efg1-Rme1-Ste12 pathway. Hanson SJ; Byrne KP; Wolfe KH PLoS Genet; 2017 Nov; 13(11):e1007092. PubMed ID: 29176810 [TBL] [Abstract][Full Text] [Related]
25. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae. Vivier MA; Lambrechts MG; Pretorius IS Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611 [TBL] [Abstract][Full Text] [Related]
26. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae. Eck R; Stoyan T; Künkel W Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675 [TBL] [Abstract][Full Text] [Related]
27. Overexpression of Candida albicans secretory aspartyl proteinase 2 and its expression in Saccharomyces cerevisiae do not augment virulence in mice. Dubois N; Colina AR; Aumont F; Belhumeur P; de Repentigny L Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2299-2310. PubMed ID: 9720053 [TBL] [Abstract][Full Text] [Related]
28. The Cryptococcus neoformans STE12alpha gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Wickes BL; Edman U; Edman JC Mol Microbiol; 1997 Dec; 26(5):951-60. PubMed ID: 9426132 [TBL] [Abstract][Full Text] [Related]
29. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant. Bai C; Chan FY; Wang Y Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072 [TBL] [Abstract][Full Text] [Related]
30. Rst1 and Rst2 are required for the a/alpha diploid cell type in yeast. Gelli A Mol Microbiol; 2002 Nov; 46(3):845-54. PubMed ID: 12410840 [TBL] [Abstract][Full Text] [Related]
31. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Nicholls S; Straffon M; Enjalbert B; Nantel A; Macaskill S; Whiteway M; Brown AJ Eukaryot Cell; 2004 Oct; 3(5):1111-23. PubMed ID: 15470239 [TBL] [Abstract][Full Text] [Related]
32. In vitro study of secreted aspartyl proteinases Sap1 to Sap3 and Sap4 to Sap6 expression in Candida albicans pleomorphic forms. Staniszewska M; Bondaryk M; Siennicka K; Kurek A; Orłowski J; Schaller M; Kurzatkowski W Pol J Microbiol; 2012; 61(4):247-56. PubMed ID: 23484407 [TBL] [Abstract][Full Text] [Related]
33. Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae. Miyakawa Y Yeast; 2000 Aug; 16(11):1045-51. PubMed ID: 10923026 [TBL] [Abstract][Full Text] [Related]
34. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4. Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830 [TBL] [Abstract][Full Text] [Related]
36. Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. Wong Sak Hoi J; Dumas B Eukaryot Cell; 2010 Apr; 9(4):480-5. PubMed ID: 20139240 [TBL] [Abstract][Full Text] [Related]
37. Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Chou S; Lane S; Liu H Mol Cell Biol; 2006 Jul; 26(13):4794-805. PubMed ID: 16782869 [TBL] [Abstract][Full Text] [Related]
38. Development of pseudohyphae by embedded haploid and diploid yeast. Lo WS; Raitses EI; Dranginis AM Curr Genet; 1997 Sep; 32(3):197-202. PubMed ID: 9339344 [TBL] [Abstract][Full Text] [Related]
39. [Cloning of Candida albicans CaBEM1 and its role in filamentous growth of Saccharomyces cerevisiae]. Zhou Z; Liu HP; Chen JY Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Sep; 34(5):553-9. PubMed ID: 12198555 [TBL] [Abstract][Full Text] [Related]
40. [CaSRB9, a novel Candida albicans gene, plays a role in morphogenesis of Saccharomyces cerevisiae]. Zhou Z; Cao F; Chen JY Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 May; 34(3):298-304. PubMed ID: 12019441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]