These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 7803165)

  • 1. Oscillatory membrane properties of spinal cord neurons that are active during fictive swimming in Rana temporaria embryos.
    Sillar KT; Simmers AJ
    Eur J Morphol; 1994 Aug; 32(2-4):185-92. PubMed ID: 7803165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical coupling and intrinsic neuronal oscillations in Rana temporaria spinal cord.
    Sillar KT; Simmers AJ
    Eur J Morphol; 1994 Aug; 32(2-4):293-8. PubMed ID: 7803182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5HT induces NMDA receptor-mediated intrinsic oscillations in embryonic amphibian spinal neurons.
    Sillar KT; Simmers AJ
    Proc Biol Sci; 1994 Feb; 255(1343):139-45. PubMed ID: 8165227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?
    Cowley KC; Zaporozhets E; Maclean JN; Schmidt BJ
    J Neurophysiol; 2005 Dec; 94(6):3805-14. PubMed ID: 16120672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord.
    Wang D; Grillner S; Wallén P
    Neuropharmacology; 2006 Nov; 51(6):1038-46. PubMed ID: 16919683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for slow NMDA receptor-mediated, intrinsic neuronal oscillations in the control of fast fictive swimming in Xenopus laevis larvae.
    Reith CA; Sillar KT
    Eur J Neurosci; 1998 Apr; 10(4):1329-40. PubMed ID: 9749787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage oscillations in Xenopus spinal cord neurons: developmental onset and dependence on co-activation of NMDA and 5HT receptors.
    Scrymgeour-Wedderburn JF; Reith CA; Sillar KT
    Eur J Neurosci; 1997 Jul; 9(7):1473-82. PubMed ID: 9240404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2014 Jul; 112(1):30-8. PubMed ID: 24740857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative investigation of calcium signals for locomotor pattern generation in the lamprey spinal cord.
    Viana di Prisco G; Alford S
    J Neurophysiol; 2004 Sep; 92(3):1796-806. PubMed ID: 15140901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending serotonergic spinal projections and modulation of locomotor rhythmicity in Rana temporaria embryos.
    Woolston AM; Wedderburn JF; Sillar KT
    Proc Biol Sci; 1994 Jan; 255(1342):73-9. PubMed ID: 8153139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rostrocaudal distribution of 5-HT innervation in the lamprey spinal cord and differential effects of 5-HT on fictive locomotion.
    Zhang W; Pombal MA; el Manira A; Grillner S
    J Comp Neurol; 1996 Oct; 374(2):278-90. PubMed ID: 8906499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Methyl-D-aspartate-induced oscillations in whole cell clamped neurons from the isolated spinal cord of Xenopus laevis embryos.
    Prime L; Pichon Y; Moore LE
    J Neurophysiol; 1999 Aug; 82(2):1069-73. PubMed ID: 10444699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey.
    Wallén P; Grillner S
    J Neurosci; 1987 Sep; 7(9):2745-55. PubMed ID: 3040925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal and supraspinal functions of noradrenaline in the frog embryo: consequences for motor behaviour.
    McLean DL; Sillar KT
    J Physiol; 2003 Sep; 551(Pt 2):575-87. PubMed ID: 12909679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenytoin blocks N-methyl-D-aspartate responses of mouse central neurons.
    Wamil AW; McLean MJ
    J Pharmacol Exp Ther; 1993 Oct; 267(1):218-27. PubMed ID: 8229748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane potential oscillations in reticulospinal and spinobulbar neurons during locomotor activity.
    Einum JF; Buchanan JT
    J Neurophysiol; 2005 Jul; 94(1):273-81. PubMed ID: 15744013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.