These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7803176)

  • 1. Sensory activity in the telencephalon of the clawed toad, Xenopus laevis.
    Birkhofer M; Bleckmann H; Görner P
    Eur J Morphol; 1994 Aug; 32(2-4):262-6. PubMed ID: 7803176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of the sensory input to the telencephalon in the fire-bellied toad, Bombina orientalis.
    Laberge F; Roth G
    J Comp Neurol; 2007 May; 502(1):55-74. PubMed ID: 17335050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis.
    Yoshino J; Tochinai S
    Dev Growth Differ; 2004 Dec; 46(6):523-34. PubMed ID: 15610142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
    Behrend O; Branoner F; Zhivkov Z; Ziehm U
    Eur J Neurosci; 2006 Feb; 23(3):729-44. PubMed ID: 16487154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory evoked potentials from medulla and midbrain in the clawed frog, Xenopus laevis laevis.
    Bibikov NG; Elepfandt A
    Hear Res; 2005 Jun; 204(1-2):29-36. PubMed ID: 15925189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae.
    Yoshino J; Tochinai S
    Dev Growth Differ; 2006 Jan; 48(1):15-24. PubMed ID: 16466389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis.
    Zittlau KE; Claas B; Münz H; Görner P
    Neurosci Lett; 1985 Sep; 60(1):77-81. PubMed ID: 4058802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of neuronal activity of telencephalic structures during chicken embryogenesis].
    Gevorgian EG; Bogdanov OV; Mikhaĭlenok EL
    Zh Evol Biokhim Fiziol; 1980; 16(3):273-81. PubMed ID: 7405442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Essential and substituted amino acids as chemical stimuli in the clawed frog Xenopus laevis].
    Kruzhalov NB
    Zh Evol Biokhim Fiziol; 1983; 19(5):503-6. PubMed ID: 6650035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional capacity for processing concurrent stimuli is larger across sensory modalities than within a modality.
    Talsma D; Doty TJ; Strowd R; Woldorff MG
    Psychophysiology; 2006 Nov; 43(6):541-9. PubMed ID: 17076810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a pesticide, Gesagard 50, on regeneration of the endbrain of Xenopus laevis (Daud.) Tadpoles.
    Maryańska-Nadachowska A
    Folia Biol (Krakow); 1980; 28(4):375-89. PubMed ID: 7215599
    [No Abstract]   [Full Text] [Related]  

  • 12. [Behavioral reactions of the clawed toad Xenopus laevis to L- and D-isomers of amino acids].
    Kruzhalov NB; Zhukova VM
    Zh Evol Biokhim Fiziol; 1988; 24(3):451-5. PubMed ID: 3176774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisensory processing in "unimodal" neurons: cross-modal subthreshold auditory effects in cat extrastriate visual cortex.
    Allman BL; Meredith MA
    J Neurophysiol; 2007 Jul; 98(1):545-9. PubMed ID: 17475717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central organization of wave localization in the clawed frog, Xenopus laevis. I. Involvement and bilateral organization of the midbrain.
    Elepfandt A
    Brain Behav Evol; 1988; 31(6):349-57. PubMed ID: 3046708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electrophysiology of the telencephalic cortex in reptiles (lacerta galloti); EEG and evoked potentials (author's transl)].
    González J; Rial RV
    Rev Esp Fisiol; 1977 Sep; 33(3):239-48. PubMed ID: 897328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Tegmento-telencephalic interactions in turtles].
    Belekhova MG
    Neirofiziologiia; 1980; 12(3):255-63. PubMed ID: 7402410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli.
    Perrault TJ; Vaughan JW; Stein BE; Wallace MT
    J Neurophysiol; 2005 May; 93(5):2575-86. PubMed ID: 15634709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory neglect in a frog: evidence for early evolution of attentional processes in vertebrates.
    Traub B; Elepfandt A
    Brain Res; 1990 Oct; 530(1):105-7. PubMed ID: 2271937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central control of melanotrope cells of Xenopus laevis.
    Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW
    Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual deprivation alters the development of cortical multisensory integration.
    Carriere BN; Royal DW; Perrault TJ; Morrison SP; Vaughan JW; Stein BE; Wallace MT
    J Neurophysiol; 2007 Nov; 98(5):2858-67. PubMed ID: 17728386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.