These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7803483)

  • 1. The effects of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine.
    Nappi AJ; Vass E
    Biochim Biophys Acta; 1994 Dec; 1201(3):498-504. PubMed ID: 7803483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of hydroxyl radical attack on dopa, dopamine, 6-hydroxydopa, and 6-hydroxydopamine.
    Nappi AJ; Vass E; Prota G; Memoli S
    Pigment Cell Res; 1995 Dec; 8(6):283-93. PubMed ID: 8789736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease.
    Soto-Otero R; Méndez-Alvarez E; Hermida-Ameijeiras A; Muñoz-Patiño AM; Labandeira-Garcia JL
    J Neurochem; 2000 Apr; 74(4):1605-12. PubMed ID: 10737618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione prevents 2,4,5-trihydroxyphenylalanine excitotoxicity by maintaining it in a reduced, non-active form.
    Aizenman E; Boeckman FA; Rosenberg PA
    Neurosci Lett; 1992 Sep; 144(1-2):233-6. PubMed ID: 1436708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease.
    Cruces-Sande A; Méndez-Álvarez E; Soto-Otero R
    J Neurochem; 2017 Jun; 141(5):738-749. PubMed ID: 28294337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-catalyzed autoxidations of GSH and L-ascorbic acid: mutual inhibition of the respective oxidations by their coexistence.
    Ohta Y; Shiraishi N; Nishikawa T; Nishikimi M
    Biochim Biophys Acta; 2000 May; 1474(3):378-82. PubMed ID: 10779690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-mediated oxidation of 3,4-dihydroxyphenylalanine to an excitotoxin.
    Newcomer TA; Rosenberg PA; Aizenman E
    J Neurochem; 1995 Apr; 64(4):1742-8. PubMed ID: 7891103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of catalase on the inactivation of tyrosinase by ascorbic acid and by cysteine or glutathione.
    Lindbladh C; Rorsman H; Rosengren E
    Acta Derm Venereol; 1983; 63(3):209-14. PubMed ID: 6192633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amine-mediated toxicity. The effects of dopamine, norepinephrine, 5-hydroxytryptamine, 6-hydroxydopamine, ascorbate, glutathione and peroxide on the in vitro activities of creatine and adenylate kinases in the brain of the rat.
    Maker HS; Weiss C; Brannan TS
    Neuropharmacology; 1986 Jan; 25(1):25-32. PubMed ID: 3005902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson's disease.
    Méndez-Alvarez E; Soto-Otero R; Hermida-Ameijeiras A; López-Real AM; Labandeira-García JL
    Biochim Biophys Acta; 2002 Mar; 1586(2):155-68. PubMed ID: 11959457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones.
    Dagnino-Subiabre A; Cassels BK; Baez S; Johansson AS; Mannervik B; Segura-Aguilar J
    Biochem Biophys Res Commun; 2000 Jul; 274(1):32-6. PubMed ID: 10903891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prooxidant properties of ascorbic acid in the nigrostriatal dopaminergic system of C57BL/6 mice.
    Kang MJ; Lee SS; Koh HC
    Toxicology; 2012 Mar; 294(1):1-8. PubMed ID: 22285708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.
    Sonni F; Clark AC; Prenzler PD; Riponi C; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3940-9. PubMed ID: 21384873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of topa quinone cofactor.
    Kano K; Mori T; Uno B; Goto M; Ikeda T
    Biochim Biophys Acta; 1993 Jul; 1157(3):324-31. PubMed ID: 8391846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TOPA quinone, a kainate-like agonist and excitotoxin is generated by a catecholaminergic cell line.
    Newcomer TA; Rosenberg PA; Aizenman E
    J Neurosci; 1995 Apr; 15(4):3172-7. PubMed ID: 7722654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic conversion of 3,4-dihydroxyphenylalanine to 2,4,5-trihydroxyphenylalanine and 2,4,5-trihydroxyphenylalanine quinone in physiological solutions.
    Newcomer TA; Palmer AM; Rosenberg PA; Aizenman E
    J Neurochem; 1993 Sep; 61(3):911-20. PubMed ID: 8360690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New reaction pathways of dopamine under oxidative stress conditions: nonenzymatic iron-assisted conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6, 7-dihydroxytetrahydroisoquinoline.
    Napolitano A; Pezzella A; Prota G
    Chem Res Toxicol; 1999 Nov; 12(11):1090-7. PubMed ID: 10563835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro oxidation of ascorbic acid and its prevention by GSH.
    Winkler BS
    Biochim Biophys Acta; 1987 Sep; 925(3):258-64. PubMed ID: 3620500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of glutathione reductase by isoproterenol oxidation products.
    Remião F; Carmo H; Carvalho FD; Bastos ML
    J Enzyme Inhib; 2000; 15(1):47-61. PubMed ID: 10850954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of iron from ferritin by 6-hydroxydopamine under aerobic and anaerobic conditions.
    Lode HN; Bruchelt G; Rieth AG; Niethammer D
    Free Radic Res Commun; 1990; 11(1-3):153-8. PubMed ID: 2127409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.