These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7803490)

  • 1. Conductive cation transport in apical membrane vesicles prepared from fetal lung.
    Fyfe GK; Kemp PJ; Cragoe EJ; Olver RE
    Biochim Biophys Acta; 1994 Dec; 1224(3):355-64. PubMed ID: 7803490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+ transport in human proximal colonic apical membrane vesicles.
    Dudeja PK; Harig JM; Baldwin ML; Cragoe EJ; Ramaswamy K; Brasitus TA
    Gastroenterology; 1994 Jan; 106(1):125-33. PubMed ID: 8276173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Na+ transport in human distal colonic apical membrane vesicles.
    Dudeja PK; Baldwin ML; Harig JM; Cragoe EJ; Ramaswamy K; Brasitus TA
    Biochim Biophys Acta; 1994 Jul; 1193(1):67-76. PubMed ID: 8038196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-proton exchange in human ileal brush-border membrane vesicles.
    Ramaswamy K; Harig JM; Kleinman JG; Harris MS; Barry JA
    Biochim Biophys Acta; 1989 Jun; 981(2):193-9. PubMed ID: 2543457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Na+ transport in fetal lung alveolar apical membrane vesicles is regulated by fatty acids and G proteins.
    Fyfe GK; Kemp PJ; Olver RE
    Biochim Biophys Acta; 1997 Jan; 1355(1):33-42. PubMed ID: 9030199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of Na+ and Cl- conductances by PTX-sensitive G proteins in fetal lung apical membrane vesicles.
    Gambling L; Olver RE; Fyfe GK; Kemp PJ; Baines DL
    Biochim Biophys Acta; 1998 Jul; 1372(2):187-97. PubMed ID: 9675277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perinatal PTX-sensitive G-protein expression and regulation of conductive 22Na+ transport in lung apical membrane vesicles.
    Gambling L; Olver RE; Baines DL
    Biochim Biophys Acta; 1999 Jul; 1450(3):468-79. PubMed ID: 10395958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium/proton transport by apical membranes of type-II pneumocytes.
    Oelberg DG; Xu F; Shabarek F
    Biochim Biophys Acta; 1993 Jun; 1149(1):19-28. PubMed ID: 8391318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amiloride-inhibitable Na+ conductive pathways in alveolar type II pneumocytes.
    Matalon S; Bridges RJ; Benos DJ
    Am J Physiol; 1991 Feb; 260(2 Pt 1):L90-6. PubMed ID: 1996666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-coupled transport of glucose by plasma membranes of type II pneumocytes.
    Oelberg DG; Xu F; Shabarek F
    Biochim Biophys Acta; 1994 Aug; 1194(1):92-8. PubMed ID: 8075145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+ and H+ transport in human jejunal brush-border membrane vesicles.
    Kleinman JG; Harig JM; Barry JA; Ramaswamy K
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G206-11. PubMed ID: 2841867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na-H exchange.
    Knickelbein R; Aronson PS; Atherton W; Dobbins JW
    Am J Physiol; 1983 Oct; 245(4):G504-10. PubMed ID: 6624918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline transport in human placental brush-border membrane vesicles.
    Grassl SM
    Biochim Biophys Acta; 1994 Aug; 1194(1):203-13. PubMed ID: 8075137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Na+ uptake into renal brush border membrane vesicles.
    Nord EP; Hafezi A; Wright EM; Fine LG
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F548-54. PubMed ID: 6496682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cations and pH on apical membrane potential of in vitro Necturus antrum.
    Rutten MJ; Delcore R; Soybel DI; Moore CD; Cheung LY
    Am J Physiol; 1989 Apr; 256(4 Pt 1):G798-807. PubMed ID: 2539740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunocytochemical and functional characterization of Na+ conductance in adult alveolar pneumocytes.
    Matalon S; Kirk KL; Bubien JK; Oh Y; Hu P; Yue G; Shoemaker R; Cragoe EJ; Benos DJ
    Am J Physiol; 1992 May; 262(5 Pt 1):C1228-38. PubMed ID: 1375433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-H+ antiporter of rat colonic basolateral membrane vesicles.
    Dudeja PK; Foster ES; Brasitus TA
    Am J Physiol; 1989 Oct; 257(4 Pt 1):G624-32. PubMed ID: 2552827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+ uptake into colonic enterocyte membrane vesicles.
    Bridges RJ; Garty H; Benos DJ; Rummel W
    Am J Physiol; 1988 Apr; 254(4 Pt 1):C484-90. PubMed ID: 3354647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ transport by human placental brush border membranes: are there several mechanisms?
    Brunette MG; Leclerc ; Claveau D
    J Cell Physiol; 1996 Apr; 167(1):72-80. PubMed ID: 8698842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-Ca2+ exchange in sarcolemmal membrane vesicles of dog mesenteric artery.
    Matlib MA
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C323-30. PubMed ID: 3421315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.