These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7803686)

  • 1. The optimization of technological condition in the fermentation process of glutamate by pattern recognition method.
    Xu C; Chen C; Wang H; Sun J
    Chin J Biotechnol; 1994; 10(2):105-12. PubMed ID: 7803686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalised additive modelling approach to the fermentation process of glutamate.
    Liu CB; Li Y; Pan F; Shi ZP
    Bioresour Technol; 2011 Mar; 102(5):4184-90. PubMed ID: 21215612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-glutamic acid production in a continuous stirred tank bioreactor using coimmobilized bio-catalyst using a fluorosensor.
    Prabhu N; Babu JS; Sundaram S
    Biomed Sci Instrum; 2002; 38():495-500. PubMed ID: 12085657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a new heteropolysaccharide production by a native isolate of Leuconostoc sp. CFR-2181.
    Vijayendra SV; Babu RS
    Lett Appl Microbiol; 2008 Jun; 46(6):643-8. PubMed ID: 18384525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production.
    Li J; Ma C; Ma Y; Li Y; Zhou W; Xu P
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):563-71. PubMed ID: 17119957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and scale up of industrial fermentation processes.
    Schmidt FR
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):425-35. PubMed ID: 16001256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data.
    Coleman MC; Block DE
    Biotechnol Bioeng; 2006 Oct; 95(3):412-23. PubMed ID: 16894631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of a pH feedback-controlled substrate feeding method in glutamic acid fermentation].
    Xing Y; Zhang L; Cong W; Yue L; Chen C; Ma J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1457-63. PubMed ID: 22260062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online.
    Bapat PM; Das D; Dave NN; Wangikar PP
    J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Succinic acid production from Bacteroides fragilis: process optimization and scale up in a bioreactor.
    Isar J; Agarwal L; Saran S; Saxena RK
    Anaerobe; 2006; 12(5-6):231-7. PubMed ID: 16978889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process.
    Yüzgeç U; Türker M; Hocalar A
    ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae.
    Shang F; Wen S; Wang X; Tan T
    J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: process parameters optimization.
    Prakasham RS; Subba Rao Ch; Sreenivas Rao R; Sarma PN
    Biotechnol Prog; 2005; 21(5):1380-8. PubMed ID: 16209541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs.
    Lotfy WA; Ghanem KM; El-Helow ER
    Bioresour Technol; 2007 Dec; 98(18):3470-7. PubMed ID: 17317159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation.
    Cheema JJ; Sankpal NV; Tambe SS; Kulkarni BD
    Biotechnol Prog; 2002; 18(6):1356-65. PubMed ID: 12467472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network for the optimization of fed-batch glutamic acid production.
    Miao Z; Zhao L; Yuan Y
    Chin J Biotechnol; 1998; 14(2):125-31. PubMed ID: 10196637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.
    Giudici R; Pamboukian CR; Facciotti MC
    Biotechnol Bioeng; 2004 May; 86(4):414-24. PubMed ID: 15112294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis.
    Onraedt AE; Walcarius BA; Soetaert WK; Vandamme EJ
    Biotechnol Prog; 2005; 21(4):1206-12. PubMed ID: 16080703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of kinetic models for industrial acetic fermentation: proposal of a new model optimized by genetic algorithms.
    González-Sáiz JM; Pizarro C; Garrido-Vidal D
    Biotechnol Prog; 2003; 19(2):599-611. PubMed ID: 12675605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology.
    Wang YH; Feng JT; Zhang Q; Zhang X
    J Appl Microbiol; 2008 Mar; 104(3):735-44. PubMed ID: 17953686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.