These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7804008)

  • 1. Molecular modelling of secondary and tertiary structures of hyaluronan, compared with electron microscopy and NMR data. Possible sheets and tubular structures in aqueous solution.
    Mikelsaar RH; Scott JE
    Glycoconj J; 1994 Apr; 11(2):65-71. PubMed ID: 7804008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study.
    Scott JE; Heatley F
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4850-5. PubMed ID: 10220382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronan: the absence of amide-carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models.
    Blundell CD; Deangelis PL; Almond A
    Biochem J; 2006 Jun; 396(3):487-98. PubMed ID: 16506956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data.
    Almond A; Brass A; Sheehan JK
    Glycobiology; 1998 Oct; 8(10):973-80. PubMed ID: 9719678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix.
    Almond A; Deangelis PL; Blundell CD
    J Mol Biol; 2006 May; 358(5):1256-69. PubMed ID: 16584748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy.
    Scott JE; Heatley F
    Biomacromolecules; 2002; 3(3):547-53. PubMed ID: 12005527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular organization in streptococcal pericellular capsules is based on hyaluronan tertiary structures.
    Scott JE; Thomlinson AM; Prehm P
    Exp Cell Res; 2003 Apr; 285(1):1-8. PubMed ID: 12681281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental approaches to hyaluronan structure.
    Cowman MK; Matsuoka S
    Carbohydr Res; 2005 Apr; 340(5):791-809. PubMed ID: 15780246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and NMR characterization of new hyaluronan-based NO donors.
    Di Meo C; Capitani D; Mannina L; Brancaleoni E; Galesso D; De Luca G; Crescenzi V
    Biomacromolecules; 2006 Apr; 7(4):1253-60. PubMed ID: 16602746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic acid by atomic force microscopy.
    Jacoboni I; Valdrè U; Mori G; Quaglino D; Pasquali-Ronchetti I
    J Struct Biol; 1999 Jun; 126(1):52-8. PubMed ID: 10329488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of hyaluronan (hyaluronic acid) with phospholipids as determined by gel permeation chromatography, multi-angle laser-light-scattering photometry and 1H-NMR spectroscopy.
    Ghosh P; Hutadilok N; Adam N; Lentini A
    Int J Biol Macromol; 1994 Oct; 16(5):237-44. PubMed ID: 7893628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conformations of hyaluronan in aqueous solution: comparison of theory and experiment.
    Sheehan J; Brass A; Almond A
    Biochem Soc Trans; 1999 Feb; 27(2):121-4. PubMed ID: 10093719
    [No Abstract]   [Full Text] [Related]  

  • 13. Solution structure of hyaluronic acid oligomers by experimental and theoretical NMR, and molecular dynamics simulation.
    Donati A; Magnani A; Bonechi C; Barbucci R; Rossi C
    Biopolymers; 2001 Nov; 59(6):434-45. PubMed ID: 11598878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a structure for a TSG-6.hyaluronan complex by modeling and NMR spectroscopy: insights into other members of the link module superfamily.
    Blundell CD; Almond A; Mahoney DJ; DeAngelis PL; Campbell ID; Day AJ
    J Biol Chem; 2005 May; 280(18):18189-201. PubMed ID: 15718240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry.
    Průsová A; Conte P; Kucerík J; Alonzo G
    Anal Bioanal Chem; 2010 Aug; 397(7):3023-8. PubMed ID: 20549495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 13C Nuclear magnetic relaxation study of segmental dynamics of hyaluronan in aqueous solutions.
    Dais P; Tylianakis E; Kanetakis J; Taravel FR
    Biomacromolecules; 2005; 6(3):1397-404. PubMed ID: 15877358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solution conformation of hyaluronan: a combined NMR and molecular dynamics study.
    Holmbeck SM; Petillo PA; Lerner LE
    Biochemistry; 1994 Nov; 33(47):14246-55. PubMed ID: 7947836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force spectroscopy of hyaluronan by atomic force microscopy: from hydrogen-bonded networks toward single-chain behavior.
    Giannotti MI; Rinaudo M; Vancso GJ
    Biomacromolecules; 2007 Sep; 8(9):2648-52. PubMed ID: 17665948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of the two disaccharides of hyaluronan in aqueous solution.
    Almond A; Sheehan JK; Brass A
    Glycobiology; 1997 Jul; 7(5):597-604. PubMed ID: 9254042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural behavior of highly concentrated hyaluronan.
    Matteini P; Dei L; Carretti E; Volpi N; Goti A; Pini R
    Biomacromolecules; 2009 Jun; 10(6):1516-22. PubMed ID: 19358524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.