These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7804257)

  • 1. Pilot-scale ozone inactivation of Cryptosporidium.
    Owens JH; Miltner RJ; Schaefer FW; Rice EW
    J Eukaryot Microbiol; 1994; 41(5):56S-57S. PubMed ID: 7804257
    [No Abstract]   [Full Text] [Related]  

  • 2. Risk and control of waterborne cryptosporidiosis.
    Rose JB; Huffman DE; Gennaccaro A
    FEMS Microbiol Rev; 2002 Jun; 26(2):113-23. PubMed ID: 12069877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic inactivation of Cryptosporidium parvum using ozone followed by free chlorine in natural water.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2003 Nov; 37(19):4737-47. PubMed ID: 14568061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty in prediction of disinfection performance.
    Neumann MB; von Gunten U; Gujer W
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drinking water treatment processes for removal of Cryptosporidium and Giardia.
    Betancourt WQ; Rose JB
    Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil.
    Pereira JT; Costa AO; de Oliveira Silva MB; Schuchard W; Osaki SC; de Castro EA; Paulino RC; Soccol VT
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):464-73. PubMed ID: 18498060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts.
    Peeters JE; Mazás EA; Masschelein WJ; Villacorta Martiez de Maturana I; Debacker E
    Appl Environ Microbiol; 1989 Jun; 55(6):1519-22. PubMed ID: 2764564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of Cryptosporidium parvum oocysts with sequential application of ozone and combined chlorine.
    Rennecker JL; Corona-Vasquez B; Driedger AM; Rubin SA; Mariñas BJ
    Water Sci Technol; 2001; 43(12):167-70. PubMed ID: 11464747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection.
    Gerrity D; Gamage S; Holady JC; Mawhinney DB; Quiñones O; Trenholm RA; Snyder SA
    Water Res; 2011 Feb; 45(5):2155-65. PubMed ID: 21288550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2005 Sep; 39(14):3167-76. PubMed ID: 16000207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Cryptosporidium with wastewater treatment to prevent its proliferation in the water cycle.
    Suwa M; Suzuki Y
    Water Sci Technol; 2003; 47(9):45-9. PubMed ID: 12830939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH; Elovitz MS; von Gunten U; Shukairy HM; Mariñas BJ
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of enteric adenovirus and feline calicivirus by ozone.
    Thurston-Enriquez JA; Haas CN; Jacangelo J; Gerba CP
    Water Res; 2005 Sep; 39(15):3650-6. PubMed ID: 16061270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ultraviolet light for disinfection of finished water.
    Bukhari Z; Abrams F; LeChevallier M
    Water Sci Technol; 2004; 50(1):173-8. PubMed ID: 15318505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optimization of conditions of ozone water disinfection by the method of the mathematical planning of an experiment].
    Kir'ianova EV
    Gig Sanit; 1996; (4):3-6. PubMed ID: 9005184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing methods for detection of Cryptosporidium spp in water samples.
    Lindquist HD; Bennett JW; Ware M; Stetler RE; Gauci M; Schaefer FW
    Southeast Asian J Trop Med Public Health; 2001; 32 Suppl 2():190-4. PubMed ID: 12041588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of Cryptosporidium parvum to UV light.
    Rochelle PA; Upton SJ; Montelone BA; Woods K
    Trends Parasitol; 2005 Feb; 21(2):81-7. PubMed ID: 15664531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with ozone.
    Clark RM; Sivagenesan M; Rice EW; Chen J
    Water Res; 2002 Jul; 36(12):3141-9. PubMed ID: 12171413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of temperature on the efficacy of ozonation for inactivating Cryptosporidium parvum oocysts.
    Hirata T; Shimura A; Morita S; Suzuki M; Motoyama N; Hoshikawa H; Moniwa T; Kaneko M
    Water Sci Technol; 2001; 43(12):163-6. PubMed ID: 11464746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficiency of ozonated water from a water treatment plant to inactivate Cryptosporidium oocysts during two seasonal temperatures.
    Wohlsen T; Stewart S; Aldridge P; Bates J; Gray B; Katouli M
    J Water Health; 2007 Sep; 5(3):433-40. PubMed ID: 17878558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.