These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7804817)

  • 1. Studies on the scale-up of microfiltration membrane devices.
    Brose DJ; Cates S; Hutchison FA
    PDA J Pharm Sci Technol; 1994; 48(4):184-8. PubMed ID: 7804817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up of Sterilizing-grade Membrane Filters from Discs to Pleated Cartridges: Effects of Operating Parameters and Solution Properties.
    Kumar A; Martin J; Kuriyel R
    PDA J Pharm Sci Technol; 2015; 69(1):74-87. PubMed ID: 25691716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the scale-up of crossflow filtration devices.
    Brose D; Dosmar M; Cates S; Hutchison F
    PDA J Pharm Sci Technol; 1996; 50(4):252-60. PubMed ID: 8810841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fouling resistant surface modification of microfiltration cellulose acetate membranes by using amino acid L-DOPA.
    Azari S; Zou L; Cornelissen E; Mukai Y
    Water Sci Technol; 2013; 68(4):901-8. PubMed ID: 23985522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.
    Nguyen ST; Roddick FA; Harris JL
    Water Sci Technol; 2010; 62(9):1975-83. PubMed ID: 21045321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration.
    Palacio L; Ho CC; Zydney AL
    Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM).
    Lee N; Amy G; Croué JP; Buisson H
    Water Res; 2004 Dec; 38(20):4511-23. PubMed ID: 15556226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the effect of operating parameters on the cross-flow microfiltration of yeasts.
    Hashim MA; Sen Gupta B
    Bioseparation; 1997; 7(1):17-23. PubMed ID: 9615610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination.
    Chae SR; Yamamura H; Ikeda K; Watanabe Y
    Water Res; 2008 Apr; 42(8-9):2029-42. PubMed ID: 18242659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of coliphages in secondary effluent by microfiltration-mechanisms of removal and impact of operating parameters.
    Farahbakhsh K; Smith DW
    Water Res; 2004 Feb; 38(3):585-92. PubMed ID: 14723927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers.
    Kimura K; Tanaka K; Watanabe Y
    Water Res; 2014 Feb; 49():434-43. PubMed ID: 24210507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms.
    Wang S; Liu C; Li Q
    Water Res; 2011 Jan; 45(1):357-65. PubMed ID: 20828779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of key water quality characteristics affecting the filterability of biologically treated effluent in low-pressure membrane filtration.
    Nguyen T; Fan L; Roddick FA; Harris JL
    Water Sci Technol; 2010; 62(8):1914-21. PubMed ID: 20962408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling from discs to pleated devices.
    Giglia S; Yavorsky D
    PDA J Pharm Sci Technol; 2007; 61(4):314-23. PubMed ID: 17933212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A membrane stirrer for product recovery and substrate feeding.
    Femmer T; Carstensen F; Wessling M
    Biotechnol Bioeng; 2015 Feb; 112(2):331-8. PubMed ID: 25212847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfiltration membrane plant start up: a case study with autopsy and permeability recovery analysis.
    Porcelli N; Hillis P; Judd S
    Environ Technol; 2009 May; 30(6):629-39. PubMed ID: 19603708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Conductive Microfiltration Membrane for In Situ Fouling Detection: Proof-of-Concept Using Model Wine Solutions.
    Li SY; Schon BS; Travas-Sejdic J
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000303. PubMed ID: 32767529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration of field and skim latex by microfiltration - membrane fouling and biochemical methane potential of serum.
    Thongmak N; Sridang P; Puetpaiboon U; Grasmick A
    Environ Technol; 2015; 36(19):2459-67. PubMed ID: 25812704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.