These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7805110)

  • 1. The biomechanics of walking and running.
    Ounpuu S
    Clin Sports Med; 1994 Oct; 13(4):843-63. PubMed ID: 7805110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.
    Miyoshi T; Shirota T; Yamamoto S; Nakazawa K; Akai M
    Disabil Rehabil; 2004 Jun; 26(12):724-32. PubMed ID: 15204495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gender differences in walking and running on level and inclined surfaces.
    Chumanov ES; Wall-Scheffler C; Heiderscheit BC
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1260-8. PubMed ID: 18774631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of kinematic and kinetic parameters between the locomotion patterns in nordic walking, walking and running].
    Kleindienst FI; Michel KJ; Schwarz J; Krabbe B
    Sportverletz Sportschaden; 2006 Mar; 20(1):25-30. PubMed ID: 16544213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics of walking and running: center of mass movements to muscle action.
    Farley CT; Ferris DP
    Exerc Sport Sci Rev; 1998; 26():253-85. PubMed ID: 9696992
    [No Abstract]   [Full Text] [Related]  

  • 6. Frontal plane multi-segment foot kinematics in high- and low-arched females during dynamic loading tasks.
    Powell DW; Long B; Milner CE; Zhang S
    Hum Mov Sci; 2011 Feb; 30(1):105-14. PubMed ID: 21220174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomechanical considerations of impact forces and foot stability in running].
    Komi PV; Hyvärinen T; Gollhofer A; Kvist M
    Sportverletz Sportschaden; 1993 Dec; 7(4):179-82. PubMed ID: 8146756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait.
    Caldwell GE; Forrester LW
    Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of muscle damage following eccentric exercise on gait biomechanics.
    Paschalis V; Giakas G; Baltzopoulos V; Jamurtas AZ; Theoharis V; Kotzamanidis C; Koutedakis Y
    Gait Posture; 2007 Feb; 25(2):236-42. PubMed ID: 16714113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.
    Heinlein B; Kutzner I; Graichen F; Bender A; Rohlmann A; Halder AM; Beier A; Bergmann G
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):315-26. PubMed ID: 19285767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.
    De Witt JK; Hagan RD; Cromwell RL
    J Exp Biol; 2008 Apr; 211(Pt 7):1087-92. PubMed ID: 18344482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional roles of lower-limb joint moments while walking in water.
    Miyoshi T; Shirota T; Yamamoto S; Nakazawa K; Akai M
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):194-201. PubMed ID: 15621325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking, running, and sprinting: a three-dimensional analysis of kinematics and kinetics.
    Novacheck TF
    Instr Course Lect; 1995; 44():497-506. PubMed ID: 7797888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait.
    Pohl MB; Messenger N; Buckley JG
    Gait Posture; 2007 Feb; 25(2):295-302. PubMed ID: 16759862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging and running experience affects the gearing in the musculoskeletal system of the lower extremities while walking.
    Karamanidis K; Arampatzis A
    Gait Posture; 2007 Apr; 25(4):590-6. PubMed ID: 16934980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of unilateral grab rail assistance on the sit-to-stand performance of older aged adults.
    O'Meara DM; Smith RM
    Hum Mov Sci; 2006 Apr; 25(2):257-74. PubMed ID: 16458382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction--slipping--traction.
    Valiant GA
    Sportverletz Sportschaden; 1993 Dec; 7(4):171-8. PubMed ID: 8146755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking, running and the evolution of short toes in humans.
    Rolian C; Lieberman DE; Hamill J; Scott JW; Werbel W
    J Exp Biol; 2009 Mar; 212(Pt 5):713-21. PubMed ID: 19218523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.