These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7805273)

  • 1. Reversed ratio of color-specific cones in rabbit retinal cell transplants.
    Szél A; Juliusson B; Bergström A; Wilke K; Ehinger B; van Veen T
    Brain Res Dev Brain Res; 1994 Aug; 81(1):1-9. PubMed ID: 7805273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone photoreceptors in laminated retinal transplants.
    Gjörloff K; Bruun A; Ghosh F
    Acta Ophthalmol Scand; 2001 Aug; 79(4):366-9. PubMed ID: 11453855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional topography of rod and immunocytochemically characterized "blue" and "green" cone photoreceptors in rabbit retina.
    Famiglietti EV; Sharpe SJ
    Vis Neurosci; 1995; 12(6):1151-75. PubMed ID: 8962834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human embryonic retinal cell transplants in athymic immunodeficient rat hosts.
    Aramant RB; Seiler MJ
    Cell Transplant; 1994; 3(6):461-74. PubMed ID: 7881758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary cone fields of the rabbit retina.
    Juliusson B; Bergström A; Röhlich P; Ehinger B; van Veen T; Szél A
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):811-8. PubMed ID: 8125743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptor and glial markers in human embryonic retina and in human embryonic retinal transplants to rat retina.
    Seiler MJ; Aramant RB
    Brain Res Dev Brain Res; 1994 Jul; 80(1-2):81-95. PubMed ID: 7955364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii).
    Hemmi JM; Grünert U
    Vis Neurosci; 1999; 16(2):291-302. PubMed ID: 10367964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of opsin expression and apoptosis in determination of cone types in human retina.
    Cornish EE; Xiao M; Yang Z; Provis JM; Hendrickson AE
    Exp Eye Res; 2004 Jun; 78(6):1143-54. PubMed ID: 15109921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal expression of cone opsins during monkey retinal development.
    Bumsted K; Jasoni C; Szél A; Hendrickson A
    J Comp Neurol; 1997 Feb; 378(1):117-34. PubMed ID: 9120051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones.
    MacNeil MA; Gaul PA
    J Comp Neurol; 2008 Jan; 506(1):6-15. PubMed ID: 17990268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cone-to-Müller cell ratio in the mammalian retina: A survey of seven mammals with different lifestyle.
    Lindenau W; Kuhrt H; Ulbricht E; Körner K; Bringmann A; Reichenbach A
    Exp Eye Res; 2019 Apr; 181():38-48. PubMed ID: 30641045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graft-host connections in long-term full-thickness embryonic rabbit retinal transplants.
    Ghosh F; Bruun A; Ehinger B
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):126-32. PubMed ID: 9888435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone-specific monoclonal antibody.
    Wikler KC; Rakic P; Bhattacharyya N; Macleish PR
    J Comp Neurol; 1997 Jan; 377(4):500-8. PubMed ID: 9007188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent.
    van der Merwe I; Lukáts Á; Bláhová V; Oosthuizen MK; Bennett NC; Němec P
    PLoS One; 2018; 13(8):e0202106. PubMed ID: 30092025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference in PNA label intensity between short- and middle-wavelength sensitive cones in the ground squirrel retina.
    Szél A; von Schantz M; Röhlich P; Farber DB; van Veen T
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3641-5. PubMed ID: 8258523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of cell markers in subretinal rabbit retinal transplants.
    Bergström A; Ehinger B; Wilke K; Zucker CL; Adolph AR; Szél A
    Exp Eye Res; 1994 Mar; 58(3):301-13. PubMed ID: 8174653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swine cone and rod precursors arise sequentially and display sequential and transient integration and differentiation potential following transplantation.
    Wang W; Zhou L; Lee SJ; Liu Y; Fernandez de Castro J; Emery D; Vukmanic E; Kaplan HJ; Dean DC
    Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):301-9. PubMed ID: 24327609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connections of diffuse bipolar cells in primate retina are biased against S-cones.
    Lee SC; Grünert U
    J Comp Neurol; 2007 May; 502(1):126-40. PubMed ID: 17335043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term full-thickness embryonic rabbit retinal transplants.
    Ghosh F; Johansson K; Ehinger B
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):133-42. PubMed ID: 9888436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.