These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 7805568)
21. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Li H; Wang X; Zhang N; Gottipati MK; Parpura V; Ding S Cell Calcium; 2014 Dec; 56(6):457-66. PubMed ID: 25443655 [TBL] [Abstract][Full Text] [Related]
22. The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. Gellerich FN; Gizatullina Z; Gainutdinov T; Muth K; Seppet E; Orynbayeva Z; Vielhaber S IUBMB Life; 2013 Mar; 65(3):180-90. PubMed ID: 23401251 [TBL] [Abstract][Full Text] [Related]
23. Intracellular calcium ions and intramitochondrial Ca2+ in the regulation of energy metabolism in mammalian tissues. McCormack JG; Denton RM Proc Nutr Soc; 1990 Feb; 49(1):57-75. PubMed ID: 2190228 [No Abstract] [Full Text] [Related]
24. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Smets I; Caplanusi A; Despa S; Molnar Z; Radu M; VandeVen M; Ameloot M; Steels P Am J Physiol Renal Physiol; 2004 Apr; 286(4):F784-94. PubMed ID: 14665432 [TBL] [Abstract][Full Text] [Related]
26. Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity. Chouhan AK; Ivannikov MV; Lu Z; Sugimori M; Llinas RR; Macleod GT J Neurosci; 2012 Jan; 32(4):1233-43. PubMed ID: 22279208 [TBL] [Abstract][Full Text] [Related]
27. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bradshaw PC; Pfeiffer DR BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565 [TBL] [Abstract][Full Text] [Related]
28. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels. von Kleist-Retzow JC; Hornig-Do HT; Schauen M; Eckertz S; Dinh TA; Stassen F; Lottmann N; Bust M; Galunska B; Wielckens K; Hein W; Beuth J; Braun JM; Fischer JH; Ganitkevich VY; Maniura-Weber K; Wiesner RJ Exp Cell Res; 2007 Aug; 313(14):3076-89. PubMed ID: 17509565 [TBL] [Abstract][Full Text] [Related]
29. Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia. Arnold PE; Van Putten VJ; Lumlertgul D; Burke TJ; Schrier RW Am J Physiol; 1986 Feb; 250(2 Pt 2):F357-63. PubMed ID: 3946611 [TBL] [Abstract][Full Text] [Related]
30. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells. Henzi T; Schwaller B PLoS One; 2015; 10(11):e0142005. PubMed ID: 26540196 [TBL] [Abstract][Full Text] [Related]
31. Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose. Traba J; Froschauer EM; Wiesenberger G; Satrústegui J; Del Arco A Mol Microbiol; 2008 Aug; 69(3):570-85. PubMed ID: 18485069 [TBL] [Abstract][Full Text] [Related]
32. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport. Pokhilko AV; Ataullakhanov FI; Holmuhamedov EL J Theor Biol; 2006 Nov; 243(1):152-69. PubMed ID: 16859713 [TBL] [Abstract][Full Text] [Related]
33. Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Gellerich FN; Gizatullina Z; Trumbekaite S; Korzeniewski B; Gaynutdinov T; Seppet E; Vielhaber S; Heinze HJ; Striggow F Biochem J; 2012 May; 443(3):747-55. PubMed ID: 22295911 [TBL] [Abstract][Full Text] [Related]
34. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Gavin CE; Gunter KK; Gunter TE Neurotoxicology; 1999; 20(2-3):445-53. PubMed ID: 10385903 [TBL] [Abstract][Full Text] [Related]
35. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter. Ben-Hail D; Palty R; Shoshan-Barmatz V Cold Spring Harb Protoc; 2014 Feb; 2014(2):161-6. PubMed ID: 24492769 [TBL] [Abstract][Full Text] [Related]
36. The renaissance of mitochondrial calcium transport. Pozzan T; Rizzuto R Eur J Biochem; 2000 Sep; 267(17):5269-73. PubMed ID: 10951183 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial calcium transport systems: properties, regulation, and taxonomic features. Deryabina YI; Isakova EP; Zvyagilskaya RA Biochemistry (Mosc); 2004 Jan; 69(1):91-102. PubMed ID: 14972024 [TBL] [Abstract][Full Text] [Related]
38. Calcium transport by intact synaptosomes. Influence of ionophore A23187 on plasma-membrane potential, plasma-membrane calcium transport, mitochondrial membrane potential, respiration, cytosolic free-calcium concentration and noradrenaline release. Akerman KE; Nicholls DG Eur J Biochem; 1981 Mar; 115(1):67-73. PubMed ID: 6785087 [TBL] [Abstract][Full Text] [Related]
39. The role of calcium in the control of respiration by muscle mitochondria. McMillin JB; Madden MC Med Sci Sports Exerc; 1989 Aug; 21(4):406-10. PubMed ID: 2528667 [TBL] [Abstract][Full Text] [Related]
40. [Reversibility of energy-dependent Ca2+ accumulation in mitochondria]. Akopova OV Ukr Biokhim Zh (1999); 2008; 80(2):82-9. PubMed ID: 18819378 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]