BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7805578)

  • 1. Functional maturation of creatine kinase in rat brain.
    Holtzman D; Tsuji M; Wallimann T; Hemmer W
    Dev Neurosci; 1993; 15(3-5):261-70. PubMed ID: 7805578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain creatine kinase and creatine transporter proteins in normal and creatine-treated rabbit pups.
    Kekelidze T; Khait I; Togliatti A; Holtzman D
    Dev Neurosci; 2000; 22(5-6):437-43. PubMed ID: 11111160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Hot spots' of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus.
    Kaldis P; Hemmer W; Zanolla E; Holtzman D; Wallimann T
    Dev Neurosci; 1996; 18(5-6):542-54. PubMed ID: 8940630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional aspects of creatine kinase in brain.
    Hemmer W; Wallimann T
    Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sexual dimorphism in rat cerebrum and cerebellum: different patterns of catalytically active creatine kinase isoenzymes during postnatal development and aging.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2002 Dec; 20(8):627-39. PubMed ID: 12526893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent.
    Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D
    J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine kinase isoenzymes in chicken cerebellum: specific localization of brain-type creatine kinase in Bergmann glial cells and muscle-type creatine kinase in Purkinje neurons.
    Hemmer W; Zanolla E; Furter-Graves EM; Eppenberger HM; Wallimann T
    Eur J Neurosci; 1994 Apr; 6(4):538-49. PubMed ID: 8025709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional aspects of creatine kinase isoenzymes in endothelial cells.
    Decking UK; Alves C; Wallimann T; Wyss M; Schrader J
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C320-8. PubMed ID: 11401855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels.
    Askenasy N; Koretsky AP
    Am J Physiol Cell Physiol; 2002 Feb; 282(2):C338-46. PubMed ID: 11788345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation.
    Shen W; Willis D; Zhang Y; Schlattner U; Wallimann T; Molloy GR
    Biochem J; 2002 Oct; 367(Pt 2):369-80. PubMed ID: 12093362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms.
    in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A
    J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphocreatine and ATP regulation in the hypoxic developing rat brain.
    Tsuji M; Allred E; Jensen F; Holtzman D
    Brain Res Dev Brain Res; 1995 Apr; 85(2):192-200. PubMed ID: 7600667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial creatine kinase activity by D-2-hydroxyglutaric acid in cerebellum of young rats.
    da Silva CG; Bueno AR; Rosa RB; Dutra Filho CS; Wannmacher CM; Wyse AT; Wajner M
    Neurochem Res; 2003 Sep; 28(9):1329-37. PubMed ID: 12938854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and subcellular compartmentation of creatine kinase in brain.
    Manos P; Bryan GK
    Dev Neurosci; 1993; 15(3-5):271-9. PubMed ID: 7805579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P-NMR.
    van Dorsten FA; Furter R; Bijkerk M; Wallimann T; Nicolay K
    Biochim Biophys Acta; 1996 May; 1274(1-2):59-66. PubMed ID: 8645695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location and regulation of octameric mitochondrial creatine kinase in the contact sites.
    Kottke M; Adams V; Wallimann T; Nalam VK; Brdiczka D
    Biochim Biophys Acta; 1991 Jan; 1061(2):215-25. PubMed ID: 1998693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.