These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 7805579)
1. Cellular and subcellular compartmentation of creatine kinase in brain. Manos P; Bryan GK Dev Neurosci; 1993; 15(3-5):271-9. PubMed ID: 7805579 [TBL] [Abstract][Full Text] [Related]
2. Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. Manos P; Bryan GK; Edmond J J Neurochem; 1991 Jun; 56(6):2101-7. PubMed ID: 2027017 [TBL] [Abstract][Full Text] [Related]
3. Immunofluorescent analysis of creatine kinase in cultured astrocytes by conventional and confocal microscopy: a nuclear localization. Manos P; Edmond J J Comp Neurol; 1992 Dec; 326(2):273-82. PubMed ID: 1282525 [TBL] [Abstract][Full Text] [Related]
4. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487 [TBL] [Abstract][Full Text] [Related]
5. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain. Friedman DL; Roberts R J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967 [TBL] [Abstract][Full Text] [Related]
6. Expression of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in the fetal rat brain: evidence for a nuclear energy shuttle. Chen L; Roberts R; Friedman DL J Comp Neurol; 1995 Dec; 363(3):389-401. PubMed ID: 8847407 [TBL] [Abstract][Full Text] [Related]
7. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. Ramírez O; Jiménez E Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851 [TBL] [Abstract][Full Text] [Related]
8. Expression of the brain creatine kinase gene in rat RT4 peripheral neurotumor cell lines and its modulation by cell confluence. Wilson CD; Shen W; Kuzhikandathil EV; Molloy GR Dev Neurosci; 1997; 19(5):384-94. PubMed ID: 9323459 [TBL] [Abstract][Full Text] [Related]
9. Functional aspects of creatine kinase in brain. Hemmer W; Wallimann T Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577 [TBL] [Abstract][Full Text] [Related]
10. [Intracellular distribution of creatine kinase isoenzymes in the brains and hearts of rats at different stages of postnatal development]. Iurkov IuA; Alatyrtsev VV; Daĭkhin EI Ontogenez; 1975; 6(4):368-73. PubMed ID: 1215011 [TBL] [Abstract][Full Text] [Related]
11. Functional maturation of creatine kinase in rat brain. Holtzman D; Tsuji M; Wallimann T; Hemmer W Dev Neurosci; 1993; 15(3-5):261-70. PubMed ID: 7805578 [TBL] [Abstract][Full Text] [Related]
12. The subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit. Wallimann T; Eppenberger HM Prog Clin Biol Res; 1990; 344():877-89. PubMed ID: 2203065 [TBL] [Abstract][Full Text] [Related]
13. Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons. Molloy GR; Wilson CD; Benfield P; de Vellis J; Kumar S J Neurochem; 1992 Nov; 59(5):1925-32. PubMed ID: 1402931 [TBL] [Abstract][Full Text] [Related]
14. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. Lowe MT; Kim EH; Faull RL; Christie DL; Waldvogel HJ J Cereb Blood Flow Metab; 2013 Aug; 33(8):1295-306. PubMed ID: 23715059 [TBL] [Abstract][Full Text] [Related]
15. Immunocytochemical localization of mitochondrial malate dehydrogenase in primary cultures of rat astrocytes and oligodendrocytes. Oh YJ; Markelonis GJ; Oh TH J Histochem Cytochem; 1991 May; 39(5):681-8. PubMed ID: 1707906 [TBL] [Abstract][Full Text] [Related]
16. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413 [TBL] [Abstract][Full Text] [Related]
17. Neuronal and non-neuronal catechol-O-methyltransferase in primary cultures of rat brain cells. Karhunen T; Tilgmann C; Ulmanen I; Panula P Int J Dev Neurosci; 1995 Dec; 13(8):825-34. PubMed ID: 8770656 [TBL] [Abstract][Full Text] [Related]
18. Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation. Shen W; Willis D; Zhang Y; Schlattner U; Wallimann T; Molloy GR Biochem J; 2002 Oct; 367(Pt 2):369-80. PubMed ID: 12093362 [TBL] [Abstract][Full Text] [Related]
19. Creatine kinase in non-muscle tissues and cells. Wallimann T; Hemmer W Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454 [TBL] [Abstract][Full Text] [Related]
20. [Creatine kinase isoenzymes--characterization and functions in cell]. Grzyb K; Skorkowski EF Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]