BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7805579)

  • 1. Cellular and subcellular compartmentation of creatine kinase in brain.
    Manos P; Bryan GK
    Dev Neurosci; 1993; 15(3-5):271-9. PubMed ID: 7805579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes.
    Manos P; Bryan GK; Edmond J
    J Neurochem; 1991 Jun; 56(6):2101-7. PubMed ID: 2027017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunofluorescent analysis of creatine kinase in cultured astrocytes by conventional and confocal microscopy: a nuclear localization.
    Manos P; Edmond J
    J Comp Neurol; 1992 Dec; 326(2):273-82. PubMed ID: 1282525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain.
    Friedman DL; Roberts R
    J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in the fetal rat brain: evidence for a nuclear energy shuttle.
    Chen L; Roberts R; Friedman DL
    J Comp Neurol; 1995 Dec; 363(3):389-401. PubMed ID: 8847407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the brain creatine kinase gene in rat RT4 peripheral neurotumor cell lines and its modulation by cell confluence.
    Wilson CD; Shen W; Kuzhikandathil EV; Molloy GR
    Dev Neurosci; 1997; 19(5):384-94. PubMed ID: 9323459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional aspects of creatine kinase in brain.
    Hemmer W; Wallimann T
    Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intracellular distribution of creatine kinase isoenzymes in the brains and hearts of rats at different stages of postnatal development].
    Iurkov IuA; Alatyrtsev VV; Daĭkhin EI
    Ontogenez; 1975; 6(4):368-73. PubMed ID: 1215011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional maturation of creatine kinase in rat brain.
    Holtzman D; Tsuji M; Wallimann T; Hemmer W
    Dev Neurosci; 1993; 15(3-5):261-70. PubMed ID: 7805578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit.
    Wallimann T; Eppenberger HM
    Prog Clin Biol Res; 1990; 344():877-89. PubMed ID: 2203065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons.
    Molloy GR; Wilson CD; Benfield P; de Vellis J; Kumar S
    J Neurochem; 1992 Nov; 59(5):1925-32. PubMed ID: 1402931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism.
    Lowe MT; Kim EH; Faull RL; Christie DL; Waldvogel HJ
    J Cereb Blood Flow Metab; 2013 Aug; 33(8):1295-306. PubMed ID: 23715059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunocytochemical localization of mitochondrial malate dehydrogenase in primary cultures of rat astrocytes and oligodendrocytes.
    Oh YJ; Markelonis GJ; Oh TH
    J Histochem Cytochem; 1991 May; 39(5):681-8. PubMed ID: 1707906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent.
    Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D
    J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal and non-neuronal catechol-O-methyltransferase in primary cultures of rat brain cells.
    Karhunen T; Tilgmann C; Ulmanen I; Panula P
    Int J Dev Neurosci; 1995 Dec; 13(8):825-34. PubMed ID: 8770656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation.
    Shen W; Willis D; Zhang Y; Schlattner U; Wallimann T; Molloy GR
    Biochem J; 2002 Oct; 367(Pt 2):369-80. PubMed ID: 12093362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase in non-muscle tissues and cells.
    Wallimann T; Hemmer W
    Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Creatine kinase isoenzymes--characterization and functions in cell].
    Grzyb K; Skorkowski EF
    Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.