These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7805587)

  • 1. The nutritive function of glia in a crystal-like nervous tissue: the retina of the honeybee drone.
    Tsacopoulos M; Veuthey AL
    Dev Neurosci; 1993; 15(3-5):336-42. PubMed ID: 7805587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina.
    Tsacopoulos M; Veuthey AL; Saravelos SG; Perrottet P; Tsoupras G
    J Neurosci; 1994 Mar; 14(3 Pt 1):1339-51. PubMed ID: 8120629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate.
    Tsacopoulos M; Evêquoz-Mercier V; Perrottet P; Buchner E
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8727-31. PubMed ID: 3186756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nutritive function of glia is regulated by signals released by neurons.
    Tsacopoulos M; Poitry-Yamate CL; Poitry S; Perrottet P; Veuthey AL
    Glia; 1997 Sep; 21(1):84-91. PubMed ID: 9298850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functions of glial cells in the retina of the honeybee drone.
    Coles JA
    Glia; 1989; 2(1):1-9. PubMed ID: 2523335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The light-induced increase of carbohydrate metabolism in glial cells of the honeybee retina is not mediated by K+ movement nor by cAMP.
    Evêquoz-Mercier V; Tsacopoulos M
    J Gen Physiol; 1991 Sep; 98(3):497-515. PubMed ID: 1662260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The supply of metabolic substrate from glia to photoreceptors in the retina of the honeybee drone.
    Tsacopoulos M; Coles JA; Van de Werve G
    J Physiol (Paris); 1987; 82(4):279-87. PubMed ID: 3503929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonium and glutamate released by neurons are signals regulating the nutritive function of a glial cell.
    Tsacopoulos M; Poitry-Yamate CL; Poitry S
    J Neurosci; 1997 Apr; 17(7):2383-90. PubMed ID: 9065499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.
    Gardner-Medwin AR; Coles JA; Tsacopoulos M
    Brain Res; 1981 Mar; 209(2):452-7. PubMed ID: 6261870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+.
    Coles JA; Marcaggi P; Véga C; Cotillon N
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):305-18. PubMed ID: 8887745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).
    Brazitikos PD; Tsacopoulos M
    Brain Res; 1991 Dec; 567(1):33-41. PubMed ID: 1815828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in glial intracellular K+ in drone retina caused by photostimulation but not mediated by an increase in extracellular K+.
    Coles JA; Schneider-Picard G
    Glia; 1989; 2(4):213-22. PubMed ID: 2527820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of light on glycogen turnover in the retina of the honeybee drone (author's transl)].
    Tsacopoulos M; Evèquoz V
    Klin Monbl Augenheilkd; 1980 Apr; 176(4):519-21. PubMed ID: 7421022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trafficking of molecules and metabolic signals in the retina.
    Tsacopoulos M; Poitry-Yamate CL; MacLeish PR; Poitry S
    Prog Retin Eye Res; 1998 Jul; 17(3):429-42. PubMed ID: 9695799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and subcellular localization of hexokinase, glutamate dehydrogenase, and alanine aminotransferase in the honeybee drone retina.
    Veuthey AL; Tsacopoulos M; Millan de Ruiz L; Perrottet P
    J Neurochem; 1994 May; 62(5):1939-46. PubMed ID: 8158142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone.
    Coles JA; Tsacopoulos M
    J Exp Biol; 1981 Dec; 95():75-92. PubMed ID: 7334321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on potassium transport through glial cell membranes (author's transl)].
    Coles JA; Gardner-Medwin AR; Tsacopoulos M
    Klin Monbl Augenheilkd; 1980 Apr; 176(4):522-3. PubMed ID: 7421023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina.
    Marcaggi P; Jeanne M; Coles JA
    Eur J Neurosci; 2004 Feb; 19(4):966-76. PubMed ID: 15009144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina.
    Coles JA; Orkand RK
    J Physiol; 1985 May; 362():415-35. PubMed ID: 4020694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia.
    Xu Y; Ola MS; Berkich DA; Gardner TW; Barber AJ; Palmieri F; Hutson SM; LaNoue KF
    J Neurochem; 2007 Apr; 101(1):120-31. PubMed ID: 17394462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.