These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7805835)

  • 1. Residues responsible for distinct biological functions are characterized by different statistical features of sequential and spatial neighborhoods: a thermolysin example.
    Gabrielian AE; Kostrov SA; Kirpichnikov MP
    FEBS Lett; 1994 Dec; 356(2-3):188-90. PubMed ID: 7805835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Use of frequency analysis for localization of functionally important regions of thermolysin].
    Gabriélian AE; Kostrov SA; Kirpichnikov MP
    Mol Biol (Mosk); 1994; 28(5):1044-51. PubMed ID: 7990826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refined 1.8 A X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin.
    Gomis-Rüth FX; Stöcker W; Huber R; Zwilling R; Bode W
    J Mol Biol; 1993 Feb; 229(4):945-68. PubMed ID: 8445658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis.
    Holland DR; Tronrud DE; Pley HW; Flaherty KM; Stark W; Jansonius JN; McKay DB; Matthews BW
    Biochemistry; 1992 Nov; 31(46):11310-6. PubMed ID: 1445869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermolysin and mitochondrial processing peptidase: how far structure-functional convergence goes.
    Makarova KS; Grishin NV
    Protein Sci; 1999 Nov; 8(11):2537-40. PubMed ID: 10595562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The design of metal-binding sites in proteins.
    Regan L
    Annu Rev Biophys Biomol Struct; 1993; 22():257-87. PubMed ID: 8347991
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of substrate binding sites in enzymes by computational solvent mapping.
    Silberstein M; Dennis S; Brown L; Kortvelyesi T; Clodfelter K; Vajda S
    J Mol Biol; 2003 Oct; 332(5):1095-113. PubMed ID: 14499612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry.
    Liu YH; Konermann L
    Biochemistry; 2008 Jun; 47(24):6342-51. PubMed ID: 18494500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of thermolysin.
    Matthews BW; Colman PM; Jansonius JN; Titani K; Walsh KA; Neurath H
    Nat New Biol; 1972 Jul; 238(80):41-3. PubMed ID: 18663850
    [No Abstract]   [Full Text] [Related]  

  • 10. Differences in transition state stabilization between thermolysin (EC 3.4.24.27) and neprilysin (EC 3.4.24.11).
    Marie-Claire C; Ruffet E; Tiraboschi G; Fournie-Zaluski MC
    FEBS Lett; 1998 Nov; 438(3):215-9. PubMed ID: 9827548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the action of thermolysin.
    Tronrud DE; Roderick SL; Matthews BW
    Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin.
    Gomis-Rüth FX; Kress LF; Kellermann J; Mayr I; Lee X; Huber R; Bode W
    J Mol Biol; 1994 Jun; 239(4):513-44. PubMed ID: 8006965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method.
    Hirakawa T; Fujita S; Ohyama T; Dedachi K; Khan MT; Sylte I; Kurita N
    J Mol Graph Model; 2012 Mar; 33():1-11. PubMed ID: 22112671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of zinc substitutions in the active site of thermolysin.
    Holland DR; Hausrath AC; Juers D; Matthews BW
    Protein Sci; 1995 Oct; 4(10):1955-65. PubMed ID: 8535232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational active site mapping as a starting point to fragment-based lead discovery.
    Behnen J; Köster H; Neudert G; Craan T; Heine A; Klebe G
    ChemMedChem; 2012 Feb; 7(2):248-61. PubMed ID: 22213702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational mapping identifies the binding sites of organic solvents on proteins.
    Dennis S; Kortvelyesi T; Vajda S
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4290-5. PubMed ID: 11904374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the hydrophobic effect on the molecular level: the role of water, enthalpy, and entropy in ligand binding to thermolysin.
    Biela A; Nasief NN; Betz M; Heine A; Hangauer D; Klebe G
    Angew Chem Int Ed Engl; 2013 Feb; 52(6):1822-8. PubMed ID: 23283700
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.