These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7805835)

  • 21. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin.
    Ragusa S; Mouchet P; Lazennec C; Dive V; Meinnel T
    J Mol Biol; 1999 Jun; 289(5):1445-57. PubMed ID: 10373378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that Asn542 of neprilysin (EC 3.4.24.11) is involved in binding of the P2' residue of substrates and inhibitors.
    Dion N; Le Moual H; Fournié-Zaluski MC; Roques BP; Crine P; Boileau G
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):623-7. PubMed ID: 7487905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin.
    Menach E; Hashida Y; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism.
    Mock WL; Stanford DJ
    Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the subsite-structure of vimelysin and thermolysin using FRETS-libraries.
    Oda K; Takahashi T; Takada K; Tsunemi M; Ng KK; Hiraga K; Harada S
    FEBS Lett; 2005 Sep; 579(22):5013-8. PubMed ID: 16139276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.
    Menach E; Yasukawa K; Inouye K
    J Biochem; 2012 Sep; 152(3):231-9. PubMed ID: 22648563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic and structural approaches of the thermolysin mechanism in glycerol-containing media.
    Pauthe E; Dauchez M; Berry H; Berjot M; Monti JP; Alix AJ; Larreta-Garde V
    Ann N Y Acad Sci; 1998 Dec; 864():458-62. PubMed ID: 9928125
    [No Abstract]   [Full Text] [Related]  

  • 29. NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer formed by subunits having the native structure.
    Rico M; Jiménez MA; González C; De Filippis V; Fontana A
    Biochemistry; 1994 Dec; 33(49):14834-47. PubMed ID: 7993910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermolysin in the absence of substrate has an open conformation.
    Hausrath AC; Matthews BW
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1002-7. PubMed ID: 12037302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR solution structure of the 205-316 C-terminal fragment of thermolysin. An example of dimerization coupled to partial unfolding.
    Conejero-Lara F; González C; Jiménez MA; Padmanabhan S; Mateo PL; Rico M
    Biochemistry; 1997 Sep; 36(39):11975-83. PubMed ID: 9305992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Ca(2+)-binding sites in proteins.
    Nayal M; Di Cera E
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):817-21. PubMed ID: 8290605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin.
    Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M
    J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases.
    Veltman OR; Vriend G; Hardy F; Mansfeld J; van den Burg B; Venema G; Eijsink VG
    Eur J Biochem; 1997 Sep; 248(2):433-40. PubMed ID: 9346299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S₁'-pocket of thermolysin.
    Englert L; Biela A; Zayed M; Heine A; Hangauer D; Klebe G
    Biochim Biophys Acta; 2010 Nov; 1800(11):1192-202. PubMed ID: 20600625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential effect of halide anions on the hydrolysis of different dansyl substrates by thermolysin.
    Yang JJ; Artis DR; Van Wart HE
    Biochemistry; 1994 May; 33(21):6516-23. PubMed ID: 8204586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of protein function by physical perturbation method.
    Kidokoro S
    Adv Biophys; 1998; 35():121-43. PubMed ID: 9949768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Local unfolding is required for the site-specific protein modification by transglutaminase.
    Spolaore B; Raboni S; Ramos Molina A; Satwekar A; Damiano N; Fontana A
    Biochemistry; 2012 Oct; 51(43):8679-89. PubMed ID: 23083324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability.
    Kojima K; Nakata H; Inouye K
    Biochim Biophys Acta; 2014 Feb; 1844(2):330-8. PubMed ID: 24192395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease.
    Ogino H; Tsuchiyama S; Yasuda M; Doukyu N
    Protein Eng Des Sel; 2010 Mar; 23(3):147-52. PubMed ID: 20083492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.