These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7806928)

  • 1. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix.
    Schneider CJ; van Dijk JD; De Leeuw AA; Wust P; Baumhoer W
    Int J Hyperthermia; 1994; 10(5):733-47. PubMed ID: 7806928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system.
    Schneider C; Van Dijk JD
    Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and testing of SAR-visualizing phantoms for quality control in RF hyperthermia.
    Wust P; Fähling H; Jordan A; Nadobny J; Seebass M; Felix R
    Int J Hyperthermia; 1994; 10(1):127-42. PubMed ID: 8144984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of annular arrays in practice: the measurement of phase and amplitude patterns of radio-frequency deep body applicators.
    Schneider CJ; Kuijer JP; Colussi LC; Schepp CJ; Van Dijk JD
    Med Phys; 1995 Jun; 22(6):755-65. PubMed ID: 7565364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative determination of SAR profiles from photographs of the light-emitting diode matrix.
    Schneider CJ; de Leeuw AA; van Dijk JD
    Int J Hyperthermia; 1992; 8(5):609-19. PubMed ID: 1402137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality control of the SIGMA applicator using a lamp phantom: a four-centre comparison.
    Wust P; Fähling H; Felix R; Rahman S; Issels RD; Feldmann H; van Rhoon G; van der Zee J
    Int J Hyperthermia; 1995; 11(6):755-67; discussion 867, 869. PubMed ID: 8586898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The measurement of fringing fields in a radio-frequency hyperthermia array with emphasis on bolus size.
    Wiersma J; van Dijk JD; Sijbrands J; Schneider CJ
    Int J Hyperthermia; 1998; 14(6):535-51. PubMed ID: 9886661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet.
    Van Rhoon GC; Van Der Heuvel DJ; Ameziane A; Rietveld PJ; Volenec K; Van Der Zee J
    Int J Hyperthermia; 2003; 19(6):642-54. PubMed ID: 14756453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a clinical deep-body hyperthermia system based on the 'coaxial TEM' applicator.
    De Leeuw AA; Lagendijk JJ
    Int J Hyperthermia; 1987; 3(5):413-21. PubMed ID: 3681041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibrated electro-optic E-field sensors for hyperthermia applications.
    Berger J; Petermann K; Fähling H; Wust P
    Phys Med Biol; 2001 Feb; 46(2):399-411. PubMed ID: 11229722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An on-line phase measurement system for quality assurance of the BSD 2000. Part I: technical description of the measurement system.
    Gromoll C; Lamprecht U; Hehr T; Buchgeister M; Bamberg M
    Int J Hyperthermia; 2000; 16(4):355-63. PubMed ID: 10949131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific absorption rate steering by patient positioning in the 'Coaxial TEM' system: phantom investigation.
    De Leeuw AA; Mooibroek J; Lagendijk JJ
    Int J Hyperthermia; 1991; 7(4):605-11. PubMed ID: 1919155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A variable microwave array attenuator for use with single-element waveguide applicators.
    Sherar MD; Clark H; Cooper B; Kumaradas J; Liu FF
    Int J Hyperthermia; 1994; 10(5):723-31. PubMed ID: 7806927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for the quantitative evaluation of SAR distribution in deep regional hyperthermia.
    Baroni C; Giri MG; Meliadó G; Maluta S; Chierego G
    Int J Hyperthermia; 2001; 17(5):369-81. PubMed ID: 11587076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.