These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7807050)

  • 1. Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures.
    Rohr S; Salzberg BM
    J Gen Physiol; 1994 Aug; 104(2):287-309. PubMed ID: 7807050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644.
    Rohr S; Kucera JP
    Biophys J; 1997 Feb; 72(2 Pt 1):754-66. PubMed ID: 9017201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale.
    Rohr S; Salzberg BM
    Biophys J; 1994 Sep; 67(3):1301-15. PubMed ID: 7811945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multiple site optical recording of transmembrane voltage.
    Rohr S
    J Cardiovasc Electrophysiol; 1995 Jul; 6(7):551-68. PubMed ID: 8528490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 May; 29(5):697-707. PubMed ID: 7606760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recording of impulse propagation in designer cultures. Cardiac tissue architectures inducing ultra-slow conduction.
    Rohr S; Kléber AG; Kucera JP
    Trends Cardiovasc Med; 1999 Oct; 9(7):173-9. PubMed ID: 10881747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2- and 3-dimensional computer models.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 Sep; 30(3):449-59. PubMed ID: 7585837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction.
    Rohr S; Kucera JP; Kléber AG
    Circ Res; 1998 Oct; 83(8):781-94. PubMed ID: 9776725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic conduction in monolayers of neonatal rat heart cells cultured on collagen substrate.
    Fast VG; Kléber AG
    Circ Res; 1994 Sep; 75(3):591-5. PubMed ID: 8062430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures.
    Fast VG; Ideker RE
    J Cardiovasc Electrophysiol; 2000 May; 11(5):547-56. PubMed ID: 10826934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation of long-distance propagation of impulses elicited by Poisson-process stimulation.
    Moradmand K; Goldfinger MD
    J Neurophysiol; 1995 Dec; 74(6):2415-26. PubMed ID: 8747202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization.
    Rohr S; Schölly DM; Kléber AG
    Circ Res; 1991 Jan; 68(1):114-30. PubMed ID: 1984856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow conduction in cardiac tissue, II: effects of branching tissue geometry.
    Kucera JP; Kléber AG; Rohr S
    Circ Res; 1998 Oct; 83(8):795-805. PubMed ID: 9776726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue culture.
    Igelmund P; Fleischmann BK; Fischer IR; Soest J; Gryshchenko O; Böhm-Pinger MM; Sauer H; Liu Q; Hescheler J
    Pflugers Arch; 1999 Apr; 437(5):669-79. PubMed ID: 10087143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow conduction in cardiac tissue: insights from optical mapping at the cellular level.
    Kucera JP; Kléber AG; Rohr S
    J Electrocardiol; 2001; 34 Suppl():57-64. PubMed ID: 11781937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes.
    Gillis AM; Fast VG; Rohr S; Kléber AG
    Circ Res; 1996 Oct; 79(4):676-90. PubMed ID: 8831491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical mapping of impulse propagation in engineered cardiac tissue.
    Radisic M; Fast VG; Sharifov OF; Iyer RK; Park H; Vunjak-Novakovic G
    Tissue Eng Part A; 2009 Apr; 15(4):851-60. PubMed ID: 18847360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflected reentry in nonhomogeneous ventricular muscle as a mechanism of cardiac arrhythmias.
    Rozanski GJ; Jalifé J; Moe GK
    Circulation; 1984 Jan; 69(1):163-73. PubMed ID: 6689641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.